使用scipy,有没有一种简单的方法来仿真MATLAB的dctmtx
函数的行为,该函数针对某些给定的N返回NxN DCT矩阵?有scipy.fftpack.dctn
,但仅适用于DCT。
如果我不想使用scipy之外的其他依赖项,是否必须从头开始实现?
答案 0 :(得分:1)
DCT是线性变换,因此获取变换矩阵的一种方法是将其应用于单位矩阵。在下面的示例中,我找到了长度为8的序列的矩阵(一般情况下将8更改为N
):
In [124]: import numpy as np
In [125]: from scipy.fftpack import dct
In [126]: D = dct(np.eye(8), axis=0)
D
是矩阵:
In [127]: D
Out[127]:
array([[ 2. , 2. , 2. , 2. , 2. , 2. , 2. , 2. ],
[ 1.96157056, 1.66293922, 1.11114047, 0.39018064, -0.39018064, -1.11114047, -1.66293922, -1.96157056],
[ 1.84775907, 0.76536686, -0.76536686, -1.84775907, -1.84775907, -0.76536686, 0.76536686, 1.84775907],
[ 1.66293922, -0.39018064, -1.96157056, -1.11114047, 1.11114047, 1.96157056, 0.39018064, -1.66293922],
[ 1.41421356, -1.41421356, -1.41421356, 1.41421356, 1.41421356, -1.41421356, -1.41421356, 1.41421356],
[ 1.11114047, -1.96157056, 0.39018064, 1.66293922, -1.66293922, -0.39018064, 1.96157056, -1.11114047],
[ 0.76536686, -1.84775907, 1.84775907, -0.76536686, -0.76536686, 1.84775907, -1.84775907, 0.76536686],
[ 0.39018064, -1.11114047, 1.66293922, -1.96157056, 1.96157056, -1.66293922, 1.11114047, -0.39018064]])
验证D @ x
等同于dct(x)
:
In [128]: x = np.array([1, 2, 0, -1, 3, 0, 1, -1])
In [129]: dct(x)
Out[129]: array([10. , 4.02535777, -1.39941754, 7.38025967, -1.41421356, -6.39104653, -7.07401092, 7.51550307])
In [130]: D @ x
Out[130]: array([10. , 4.02535777, -1.39941754, 7.38025967, -1.41421356, -6.39104653, -7.07401092, 7.51550307])
请注意,D @ x
通常比dct(x)
慢得多。