Opencv使用cuda编译,但不使用gpu吗?

时间:2018-12-19 02:45:16

标签: python opencv deep-learning gpu

我已经使用cmake安装了opencv 3.4.4。 在此之前,我已经安装了带有cudnn 6.0的cuda 8.0。 当我运行./deviceQuery时,它会给我:

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 10.0, CUDA Runtime Version = 8.0, NumDevs = 1, Device0 = GeForce GTX 1060
Result = PASS

所以,这意味着我已经在系统上成功安装了cuda。 当我安装opencv 3.4.4并运行cv2.getBuildInformation()时,它会给我:

General configuration for OpenCV 3.4.4 =====================================
  Version control:               unknown

  Extra modules:
    Location (extra):            /home/qrsn/Packages/opencv/opencv_contrib/modules
    Version control (extra):     unknown

  Platform:
    Timestamp:                   2018-12-17T15:51:32Z
    Host:                        Linux 4.16.0-041600-generic x86_64
    CMake:                       3.10.2
    CMake generator:             Unix Makefiles
    CMake build tool:            /usr/bin/make
    Configuration:               RELEASE

  CPU/HW features:
    Baseline:                    SSE SSE2 SSE3
      requested:                 SSE3
    Dispatched code generation:  SSE4_1 SSE4_2 FP16 AVX AVX2
      requested:                 SSE4_1 SSE4_2 AVX FP16 AVX2 AVX512_SKX
      SSE4_1 (6 files):          + SSSE3 SSE4_1
      SSE4_2 (2 files):          + SSSE3 SSE4_1 POPCNT SSE4_2
      FP16 (1 files):            + SSSE3 SSE4_1 POPCNT SSE4_2 FP16 AVX
      AVX (6 files):             + SSSE3 SSE4_1 POPCNT SSE4_2 AVX
      AVX2 (12 files):           + SSSE3 SSE4_1 POPCNT SSE4_2 FP16 FMA3 AVX AVX2

  C/C++:
    Built as dynamic libs?:      YES
    C++ Compiler:                /usr/bin/g++-4.8  (ver 4.8.5)
    C++ flags (Release):         -fsigned-char -W -Wall -Werror=return-type -Werror=non-virtual-dtor -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wundef -Winit-self -Wpointer-arith -Wshadow -Wsign-promo -Wuninitialized -Winit-self -Wno-narrowing -Wno-delete-non-virtual-dtor -Wno-comment -Wno-missing-field-initializers -fdiagnostics-show-option -Wno-long-long -pthread -fomit-frame-pointer -ffast-math -ffunction-sections -fdata-sections  -msse -msse2 -msse3 -fvisibility=hidden -fvisibility-inlines-hidden -O3 -DNDEBUG  -DNDEBUG
    C++ flags (Debug):           -fsigned-char -W -Wall -Werror=return-type -Werror=non-virtual-dtor -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wundef -Winit-self -Wpointer-arith -Wshadow -Wsign-promo -Wuninitialized -Winit-self -Wno-narrowing -Wno-delete-non-virtual-dtor -Wno-comment -Wno-missing-field-initializers -fdiagnostics-show-option -Wno-long-long -pthread -fomit-frame-pointer -ffast-math -ffunction-sections -fdata-sections  -msse -msse2 -msse3 -fvisibility=hidden -fvisibility-inlines-hidden -g  -O0 -DDEBUG -D_DEBUG
    C Compiler:                  /usr/bin/gcc-4.8
    C flags (Release):           -fsigned-char -W -Wall -Werror=return-type -Werror=non-virtual-dtor -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wmissing-prototypes -Wstrict-prototypes -Wundef -Winit-self -Wpointer-arith -Wshadow -Wuninitialized -Winit-self -Wno-narrowing -Wno-comment -Wno-missing-field-initializers -fdiagnostics-show-option -Wno-long-long -pthread -fomit-frame-pointer -ffast-math -ffunction-sections -fdata-sections  -msse -msse2 -msse3 -fvisibility=hidden -O3 -DNDEBUG  -DNDEBUG
    C flags (Debug):             -fsigned-char -W -Wall -Werror=return-type -Werror=non-virtual-dtor -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wmissing-prototypes -Wstrict-prototypes -Wundef -Winit-self -Wpointer-arith -Wshadow -Wuninitialized -Winit-self -Wno-narrowing -Wno-comment -Wno-missing-field-initializers -fdiagnostics-show-option -Wno-long-long -pthread -fomit-frame-pointer -ffast-math -ffunction-sections -fdata-sections  -msse -msse2 -msse3 -fvisibility=hidden -g  -O0 -DDEBUG -D_DEBUG
    Linker flags (Release):      
    Linker flags (Debug):        
    ccache:                      NO
    Precompiled headers:         YES
    Extra dependencies:          m pthread cudart_static -lpthread dl rt nppc nppi npps cublas cufft -L/usr/local/cuda-8.0/lib64 -L/usr/lib/x86_64-linux-gnu
    3rdparty dependencies:

  OpenCV modules:
    To be built:                 aruco bgsegm bioinspired calib3d ccalib core cudaarithm cudabgsegm cudacodec cudafeatures2d cudafilters cudaimgproc cudalegacy cudaobjdetect cudaoptflow cudastereo cudawarping cudev datasets dnn dnn_objdetect dpm face features2d flann freetype fuzzy hdf hfs highgui img_hash imgcodecs imgproc java java_bindings_generator line_descriptor ml objdetect optflow phase_unwrapping photo plot python2 python3 python_bindings_generator reg rgbd saliency shape stereo stitching structured_light superres surface_matching text tracking ts video videoio videostab viz xfeatures2d ximgproc xobjdetect xphoto
    Disabled:                    world
    Disabled by dependency:      -
    Unavailable:                 cnn_3dobj cvv js matlab ovis sfm
    Applications:                tests perf_tests examples apps
    Documentation:               NO
    Non-free algorithms:         NO

  GUI: 
    GTK+:                        YES (ver 3.22.30)
      GThread :                  YES (ver 2.56.3)
      GtkGlExt:                  NO
    OpenGL support:              NO
    VTK support:                 YES (ver 6.3.0)

  Media I/O: 
    ZLib:                        /usr/lib/x86_64-linux-gnu/libz.so (ver 1.2.11)
    JPEG:                        /usr/lib/x86_64-linux-gnu/libjpeg.so (ver 80)
    WEBP:                        /usr/lib/x86_64-linux-gnu/libwebp.so (ver encoder: 0x020e)
    PNG:                         /usr/lib/x86_64-linux-gnu/libpng.so (ver 1.6.34)
    TIFF:                        /usr/lib/x86_64-linux-gnu/libtiff.so (ver 42 / 4.0.9)
    JPEG 2000:                   build (ver 1.900.1)
    OpenEXR:                     /usr/lib/x86_64-linux-gnu/libImath.so /usr/lib/x86_64-linux-gnu/libIlmImf.so /usr/lib/x86_64-linux-gnu/libIex.so /usr/lib/x86_64-linux-gnu/libHalf.so /usr/lib/x86_64-linux-gnu/libIlmThread.so (ver 2.2.0)
    HDR:                         YES
    SUNRASTER:                   YES
    PXM:                         YES

  Video I/O:
    DC1394:                      YES (ver 2.2.5)
    FFMPEG:                      YES
      avcodec:                   YES (ver 57.107.100)
      avformat:                  YES (ver 57.83.100)
      avutil:                    YES (ver 55.78.100)
      swscale:                   YES (ver 4.8.100)
      avresample:                NO
    GStreamer:                   NO
    libv4l/libv4l2:              NO
    v4l/v4l2:                    linux/videodev2.h

  Parallel framework:            pthreads

  Trace:                         YES (with Intel ITT)

  Other third-party libraries:
    Intel IPP:                   2019.0.0 Gold [2019.0.0]
           at:                   /home/qrsn/Packages/opencv/opencv-3.4.4/build/3rdparty/ippicv/ippicv_lnx/icv
    Intel IPP IW:                sources (2019.0.0)
              at:                /home/qrsn/Packages/opencv/opencv-3.4.4/build/3rdparty/ippicv/ippicv_lnx/iw
    Lapack:                      NO
    Eigen:                       YES (ver 3.3.4)
    Custom HAL:                  NO
    Protobuf:                    build (3.5.1)

  NVIDIA CUDA:                   YES (ver 8.0, CUFFT CUBLAS NVCUVID FAST_MATH)
    NVIDIA GPU arch:             20 30 35 37 50 52 60 61
    NVIDIA PTX archs:

  OpenCL:                        YES (no extra features)
    Include path:                /home/qrsn/Packages/opencv/opencv-3.4.4/3rdparty/include/opencl/1.2
    Link libraries:              Dynamic load

  Python 2:
    Interpreter:                 /usr/bin/python2.7 (ver 2.7.15)
    Libraries:                   /usr/lib/x86_64-linux-gnu/libpython2.7.so (ver 2.7.15rc1)
    numpy:                       /usr/lib/python2.7/dist-packages/numpy/core/include (ver 1.13.3)
    packages path:               lib/python2.7/dist-packages

  Python 3:
    Interpreter:                 /home/qrsn/.virtualenvs/Training/bin/python3 (ver 3.6.7)
    Libraries:                   /usr/lib/x86_64-linux-gnu/libpython3.6m.so (ver 3.6.7)
    numpy:                       /home/qrsn/.virtualenvs/Training/lib/python3.6/site-packages/numpy/core/include (ver 1.15.4)
    packages path:               lib/python3.6/site-packages

  Python (for build):            /usr/bin/python2.7
    Pylint:                      /usr/bin/pylint (ver: 1.8.3, checks: 162)
    Flake8:                      /home/qrsn/.virtualenvs/Training/bin/flake8 (ver: 3.6.0)

  Java:                          
    ant:                         /usr/bin/ant (ver 1.10.3)
    JNI:                         /usr/lib/jvm/default-java/include /usr/lib/jvm/default-java/include/linux /usr/lib/jvm/default-java/include
    Java wrappers:               YES
    Java tests:                  YES

  Install to:                    /usr/local
-----------------------------------------------------------------

据我了解,opencv已使用cuda和cudnn成功编译。

但是当我使用cv2.dnn.readNetFromCaffe()在深度学习项目中运行计算机视觉时,输出为每秒0.8帧。

那是因为我使用readNetFromCaffe还是编译不正确的opencv。

  

注意:我曾经编译过opencv

cmake -D CMAKE_BUILD_TYPE=RELEASE \

      -D CMAKE_INSTALL_PREFIX=/usr/local \

      -D WITH_CUDA=ON \

      -D ENABLE_FAST_MATH=1 \

      -D CUDA_FAST_MATH=1 \
      
      -D CMAKE_LIBRARY_PATH=/usr/local/cuda-8.0/lib64/stubs \

      -D WITH_CUBLAS=1 \

      -D INSTALL_PYTHON_EXAMPLES=ON \

      -D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib/modules \

      -D BUILD_EXAMPLES=ON ..

0 个答案:

没有答案