是否可以制定利用PuLP
中的LpVariables配对的约束?
更具体地说,假设我有LpVariables x1
,x2
,... x100
(所有Binary类别),它们每个都代表一个对象。所有这些对象都有一个type
属性,该属性可以是1
,2
,3
或4
,还有一个group
属性,该属性也是1
,2
,3
或4
。
我将如何创建以下约束(我不确定如何在PuLP
中进行约束)
解决方案中的两个变量必须在同一group
中(可以是任何group
),并且一个变量必须为1
类型,并且一个变量必须为{{1}类型}。
解决方案本身是每个单个变量,其中8个变量的值为2
(表明它们是解决方案的一部分),其余变量的变量值为True
(表明它们是变量)。 (不是解决方案的一部分),而是由众多其他约束条件选择的。
因此,我想为解决方案添加布尔逻辑的约束是:
False
此外,是否有一种方法可以将此约束抽象为纸浆中的(type 1 object in group 1 AND type 2 object in group 1) OR
(type 1 object in group 2 AND type 2 object in group 2) OR
(type 1 object in group 3 AND type 2 object in group 3) OR
(type 1 object in group 4 AND type 2 object in group 4)
个组?
答案 0 :(得分:1)
这是一个完整的工作示例,可以满足您的要求。它应该在下面产生输出。如您所见,已经选择了8个x,并遵循从类型1(在我的示例中为类型0)和类型2(在我的示例中为类型1)中至少选择一个的规则,这也是在至少一组中有两个选择的变量。
此技巧如this question给出的答案
所述x_picked: [3, 9, 22, 49, 64, 77, 84, 93]
group_picked: [3, 0, 1, 3, 3, 0, 3, 3]
type_picked: [0, 3, 3, 3, 3, 0, 1, 2]
n_in_group_soln: [2. 1. 1. 4.]
two_or_more_in_group_soln: [1. 0. 0. 1.]
完成所需操作的自包含示例(Python3):
from pulp import *
import numpy as np
n = 100
M = 100
n_grps = 4
n_typs = 4
# Binary varaibles; 1 means include in solution, 0 means don't include
x = LpVariable.dicts("x_%s", range(n), cat='Binary')
# Assign types and groups
np.random.seed(0)
# All of these objects have a type attribute, which is either 1, 2, 3, or 4 (use zero-indexes)
type_of_x = np.random.randint(0, n_typs, n)
# as well as a group attribute, which is also 1, 2, 3, or 4. (use zero-indexes)
group_of_x = np.random.randint(0, n_grps, n)
# Also randomly assign a cost to including each solution (obj. to minimise this)
cost_of_x = np.random.random(n)
# Initialise problem and set objective:
prob = pulp.LpProblem('Minimize', pulp.LpMaximize)
prob += lpSum([x[i]*cost_of_x[i] for i in range(n)])
# CONSTRAINTS
# Two variables in the solution must be in the same group (could be any group)
n_in_group = LpVariable.dicts("n_in_group_%s", range(n_grps), cat='Integer')
two_or_more_in_group = LpVariable.dicts("two_or_more_in_group_%s", range(n_grps), cat='Binary')
for i in range(n_grps):
prob += n_in_group[i] == lpSum([x[j] for j in range(n) if type_of_x[j] == i])
prob += two_or_more_in_group[i] >= (n_in_group[i] - 1)/M
prob += two_or_more_in_group[i] <= (1 - (2 - n_in_group[i])/M)
# Need at least one for the two_or_more_in_group vars to be true:
prob += lpSum([two_or_more_in_group[i] for i in range(n_grps)]) >= 1
# and one must of type 1 (note zero index)
prob += lpSum([x[j] for j in range(n) if group_of_x[j] == 0]) >= 1
# and one must be of type 2 (note zerod index)
prob += lpSum([x[j] for j in range(n) if group_of_x[j] == 0]) >= 1
# Finally require that 8 are picked:
prob += lpSum([x[j] for j in range(n)]) == 8
# Solve and display outputs
prob.solve()
x_soln = np.array([x[i].varValue for i in range(n)])
n_in_group_soln = np.array([n_in_group[i].varValue for i in range(n_grps)])
two_or_more_in_group_soln = np.array([two_or_more_in_group[i].varValue for i in range(n_grps)])
x_picked = [i for i in range(n) if x_soln[i] > 0.5]
group_picked = [group_of_x[i] for i in x_picked]
type_picked = [type_of_x[i] for i in x_picked]
print("x_picked: " + str(x_picked))
print("group_picked: " + str(group_picked))
print("type_picked: " + str(type_picked))
print("n_in_group_soln: " + str(n_in_group_soln))
print("two_or_more_in_group_soln: " + str(two_or_more_in_group_soln))