我的数据框如下:
year<-c("2000","2000","2001","2002","2000","2002")
gender<-c("M","F","M","F","M","M")
weight<-c(0.5,0.7,0.8,0.7,0.6,0.9)
YG<-data.frame(year,gender,weight)
我想对2000和2001年的gender
进行计数,并对2002年的weight
求和,以创建一个新的数据框,例如:
year M F
1 2000 2.0 1.0
2 2001 1.0 0.0
3 2002 0.9 0.7
我尝试过类似的事情:
library(tidyverse)
YG %>%
group_by(year) %>%
summarise(sum(weight[year=="2002"]))%>%
count(round(gender[year!="2002"])) %>%
spread(gender, n, fill = 0)
答案 0 :(得分:2)
我相信现在我做对了。
library(tidyverse)
YG %>%
group_by(year, gender) %>%
summarise(n = sum(weight),
g = n()) %>%
mutate(n = ifelse(year == 2002, n, g)) %>%
select(-g) %>%
spread(gender, n, fill = 0)
## A tibble: 3 x 3
## Groups: year [3]
# year F M
# <fct> <dbl> <dbl>
#1 2000 1 2
#2 2001 0 1
#3 2002 0.7 0.9
答案 1 :(得分:2)
由于您使用的是逻辑,我认为使用case_when()
会很好用。如果您在总结之前设置了逻辑,那么您要做的就是将两列相加:
library(tidyverse)
library(data.table)
YG %>%
mutate(Male = case_when(gender == 'F' ~ 0,
year %in% c('2000', '2001') & gender == 'M'~1,
TRUE~weight),
Female = case_when(gender == 'M' ~ 0,
year %in% c('2000', '2001') & gender == 'F'~1,
TRUE~weight)) %>%
group_by(year) %>%
summarize(M = sum(Male),
F = sum(Female))
这将为您提供所需的内容:
year M F
1 2000 2.0 1.0
2 2001 1.0 0.0
3 2002 0.9 0.7
答案 2 :(得分:1)
一种可能性是预处理您要如何处理“体重”。本质上,您希望添加2002的权重,而其他年份的权重则增加1。您可以先这样做:
lastlog | grep logged | awk '{print $1}'
然后,您可以汇总并使用YG <- YG %>% add_column(wt = ifelse(year == 2002, weight, 1))
包中的dcast
函数来重新排列结果。
data.table
答案 3 :(得分:0)
鉴于您可以使用dcast
的数据:
library(data.table)
setDT(YG)
result <- dcast(YG, year ~ gender, value.var = 'weight', fun = list(sum, length))
result[, .(year,
`F` = c(result$weight_length_F[1:2], result$weight_sum_F[3]),
M = c(result$weight_length_M[1:2], result$weight_sum_M[3]))]
#year F M
#1: 2000 1.0 2.0
#2: 2001 0.0 1.0
#3: 2002 0.7 0.9
或者,您可以按年份在子集的数据集上两次调用dcast,如下所示:
result2 <- rbindlist(list(
dcast(YG[year != 2002], year ~ gender, value.var = 'weight', fun = length),
dcast(YG[year == 2002], year ~ gender, value.var = 'weight', fun = sum)))
# year F M
#1: 2000 1.0 2.0
#2: 2001 0.0 1.0
#3: 2002 0.7 0.9