我的csv文件格式如下
Col1 Col2
a b
b c
c d
d e
x b
y c
z c
m x
h b
i b
我将创建一个字典来保存这样的数据
{ b:[a,x,h,i] , c:[b,y,z], d:[c], e:[d], x:[m] }
从这本词典中我希望能够构建一个层次结构。例如:当我在字典中浏览'a'时,我应该能够显示
a -> b -> c -> d -> e
同样适用于'y'
y -> c -> d -> e
我可以把它想象成一个树结构,并想象这是一个深度优先遍历,但我不确定如何用python中的字典实现这一点。这不是决策树或二叉树等。
答案 0 :(得分:3)
您可以使用Python-Graph。
pairs = read_from_csv(...)
from pygraph.classes.digraph import digraph
gr = digraph()
gr.add_nodes(set([x for (x,y) in pairs]+[y for (x,y) in pairs]))
for pair in pairs:
gr.add_edge(pair)
#and now you can do something with the graph...
from pygraph.algorithms.searching import depth_first_search
print ' -> '.join(depth_first_search(gr, root='a')[1])
print ' -> '.join(depth_first_search(gr, root='y')[1])
答案 1 :(得分:0)
伪代码:
filedict = {}
for row in file:
try:
filedict[row.col2].append(row.col1)
except:
filedict[row.col2] = [row.col1]
invdict = dict((v,k) for k, v in filedict.iteritems())
def parse(start):
if start not in invdict:
return []
next = invdict[start]
return [next] + parse(next)
答案 2 :(得分:0)
这是一个只使用字典的解决方案:
from itertools import chain
def walk(d, k):
print k,
while k in d:
k = d[k]
print '->', k,
data = {'b': ['a','x','h','i'], 'c': ['b','y','z'], 'd': ['c'], 'e': ['d'], 'x': ['m']}
hierarchy = dict(chain(*([(c, p) for c in l] for p, l in data.iteritems())))
# {'a':'b', 'c':'d', 'b':'c', 'd':'e', 'i':'b', 'h':'b', 'm':'x', 'y':'c', 'x':'b', 'z':'c'}
walk(hierarchy, 'a') # prints 'a -> b -> c -> d -> e'
walk(hierarchy, 'y') # prints 'y -> c -> d -> e'