Hyperopt:通过重新运行来优化参数

时间:2018-12-15 14:33:07

标签: python-3.x parameters scikit-learn svm hyperopt

我正在尝试使用贝叶斯优化(Hyperopt)获得SVM算法的最佳参数。但是,我发现最佳参数会随着每次运行而变化。

下面提供的是一个简单的可复制案例。你能给它一些启示吗?

import numpy as np 
from hyperopt import fmin, tpe, hp, STATUS_OK, Trials

from sklearn.svm import SVC
from sklearn import svm, datasets
from sklearn.metrics import accuracy_score
from sklearn.model_selection import GridSearchCV, cross_val_score
from sklearn.model_selection import StratifiedShuffleSplit

iris = datasets.load_iris()
X = iris.data[:, :2] 
y = iris.target

def hyperopt_train_test(params):
    clf = svm.SVC(**params)
    return cross_val_score(clf, X, y).mean()

space4svm = {
    'C': hp.loguniform('C', -3, 3),
    'gamma': hp.loguniform('gamma', -3, 3),
}

def f(params):
    acc = hyperopt_train_test(params)
    return {'loss': -acc, 'status': STATUS_OK}

trials = Trials()

best = fmin(f, space4svm, algo=tpe.suggest, max_evals=1000, trials=trials)

print ('best:')
print (best)

以下是一些最佳值。

最佳:{'C':0.08776548401545513,“ gamma”:1.447360198193232}

最佳:{'C':0.23621788050791617,'gamma':1.2467882092108042}

最佳:{'C':0.3134163250819116,'gamma':1.0984778155489887}

1 个答案:

答案 0 :(得分:1)

那是因为在执行fminhyperopt的过程中,在定义的搜索空间'C'中随机抽取了'gamma'space4cvm的不同值程序的每次运行。

要解决此问题并产生确定性的结果,您需要使用'rstate' param of fmin

  

状态

    numpy.RandomState, default numpy.random or `$HYPEROPT_FMIN_SEED`

    Each call to `algo` requires a seed value, which should be different
    on each call. This object is used to draw these seeds via `randint`.
    The default rstate is numpy.random.RandomState(int(env['HYPEROPT_FMIN_SEED']))
    if the 'HYPEROPT_FMIN_SEED' environment variable is set to a non-empty
    string, otherwise np.random is used in whatever state it is in.

因此,如果未明确设置,则默认情况下它将检查是否设置了环境变量'HYPEROPT_FMIN_SEED'。如果没有,那么它将每次使用一个随机数。

您可以通过以下方式使用它:

rstate = np.random.RandomState(42)   #<== Use any number here but fixed

best = fmin(f, space4svm, algo=tpe.suggest, max_evals=100, trials=trials, rstate=rstate)