不正确:使用带有tensorflow的hyperopt

时间:2017-07-05 21:18:26

标签: python tensorflow

在下面的代码中,我已经从tensorflow教程(官方)修改了Deep MNIST示例。

修改 - 在损失函数中添加权重衰减并且还修改权重。 (如果不正确请告诉我。)

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import sys

from tensorflow.examples.tutorials.mnist import input_data

import tensorflow as tf

from hyperopt import STATUS_OK, STATUS_FAIL

Flags2=None

def build_and_optimize(hp_space):
    global Flags2
    Flags2 = {}
    Flags2['dp'] = hp_space['dropout_global']
    Flags2['wd'] = hp_space['wd']

    res = main(Flags2)

    results = {
        'loss': res,
        'status': STATUS_OK
    }
    return results

def deepnn(x):
    """deepnn builds the graph for a deep net for classifying digits.
        args:
            x: an input tensor with the dimensions (N_examples, 784), where 784 is the number of piexs in a standard MNIST image.

        returns:
            a tuple (y, keep_prob). y is a tensor of shape (N_examples, 10), with values equal to the logits of classifying the digit into one of classes (the digits 0-9). keep_prob is a scalar placeholder for the probability of dropout.
    """

    # reshape to use within a convolutional neural net
    # last dimension is for "features" - there is only one here, since images are
    # grayscale -- it would be 3 for RGB, 4 for RGBA, etc.
    x_image = tf.reshape(x, [-1, 28, 28, 1])
    wd = tf.placeholder(tf.float32)

    # first convolutional layer - maps one grayscale image to 32 feature maps
    W_conv1 = weight_variable([5, 5, 1, 32], wd)
    b_conv1 = bias_variable([32])
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)

    # pooling layer - downsamples by 2X
    h_pool1 = max_pool_2X2(h_conv1)

    # second convolutional layer --maps 32 feature maps to 64
    W_conv2 = weight_variable([5, 5, 32, 64], wd)
    b_conv2 = bias_variable([64])
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)

    # second pooling layer - downsamples by 2X
    h_pool2 = max_pool_2X2(h_conv2)

    # fully connected layer 1 -- after 2 round of downsampleing, our 28x28 image
    # is done to 7x7x64 feature maps --maps this to 1025 features.
    W_fc1 = weight_variable([7*7*64, 1024], wd)
    b_fc1 = bias_variable([1024])

    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

    # dropout - controls the complexity of the model, prevents co-adaptation of features.
    keep_prob = tf.placeholder(tf.float32)
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

    # map the 1024 features to 10 classes, one for each digit
    W_fc2 = weight_variable([1024, 10], wd)
    b_fc2 = bias_variable([10])

    y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
    return y_conv, keep_prob, wd

def conv2d(x, W):
    """conv2d returns a 2d convolution layer with full stride."""
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2X2(x):
    """max_pool_2x2 downsamples a feature map by 2X."""
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                            strides=[1, 2, 2, 1], padding='SAME')

def weight_variable(shape, wd = None):
    """weight_variable generates a weight variable of a given shape."""
    initial = tf.truncated_normal(shape, stddev=0.1)
    # weight decay
    if wd is not None:
        weight_decay = tf.multiply(tf.nn.l2_loss(initial), wd, name = 'weight_loss')
        tf.add_to_collection('losses', weight_decay)
    return tf.Variable(initial)

def bias_variable(shape):
    """bias_variable generates a bias variable of a given shape."""
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)


def main(_):
    global Flags2
    if Flags2 is None:
        Flags2 = {}
    if 'keep_prob' not in Flags2:
        Flags2 = {}
        Flags2['dp'] = 1.0
        Flags2['wd'] = 0.0

    print(Flags2)

    # import data
    mnist = input_data.read_data_sets('/tmp/tensorflow/mnist/input_data', one_hot=True)

    # create the model
    x = tf.placeholder(tf.float32, [None, 784])
    y_ = tf.placeholder(tf.float32, [None, 10])

    # build the graph for the deep net
    y_conv, keep_prob, wd = deepnn(x)

    cross_entropy = tf.reduce_mean(
        tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
    # adding weight decay
    tf.add_to_collection('losses', cross_entropy)
    total_loss = tf.add_n(tf.get_collection('losses'), name='total_loss')

    train_step = tf.train.AdamOptimizer(1e-4).minimize(total_loss)
    correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))


    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())


        for i in range(1000):
            batch =mnist.train.next_batch(200)

            if i % 100 == 0:
                train_accuracy = accuracy.eval(feed_dict={
                    x: batch[0], y_:batch[1], keep_prob: Flags2['dp'], wd: Flags2['wd']})
                print('step %d, training accuracy %g' %(i, train_accuracy))
            train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: Flags2['dp'], wd: Flags2['wd']})

        test_accuracy = accuracy.eval(feed_dict={x:mnist.test.images, y_:mnist.test.labels, keep_prob:1.0, wd: Flags2['wd']})
        print('test accuracy %g' % test_accuracy)

    return  test_accuracy

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--data_dir', type=str,
                        default='/tmp/tensorflow/mnist/input_data',
                        help='directory for storing input data')
    FLAGS, unparsed = parser.parse_known_args()
    tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)

Hyperopt用于调整超参数(权重衰减因子和丢失概率)。

from hyperopt import fmin, tpe, hp, Trials

import pickle
import traceback

from my_mnist_convnet import build_and_optimize

space = {
    'dropout_global': hp.uniform('conv_dropout_prob', 0.4, 0.6),
    'wd': hp.uniform('wd', 0.0, 0.01)
}

def run_a_trail():
    """Run one TPE meta optimisation step and save its results."""
    max_evals = nb_evals = 3

    print("Attempt to resume a past training if it exists:")

    try:
        trials = pickle.load(open("results.pkl", "rb"))
        print("Found saved Trials! Loading...")
        max_evals = len(trials.trials) + nb_evals
        print("Rerunning from {} trials to add another one.".format(
            len(trials.trials)))
    except:
        trials = Trials()
        print("Starting from scratch: new trials.")

    best = fmin(
        build_and_optimize,
        space,
        algo=tpe.suggest,
        trials=trials,
        max_evals=max_evals
    )
    pickle.dump(trials, open("results.pkl", "wb"))

    print(best)

    return

def plot_base_and_best_models():
    return

if __name__ == "__main__":
    """plot the model and run the optimisation forever (and save results)."""
    run_a_trail()

当使用hyperopt代码时,代码只能运行一次TPE,但是,如果增加了跟踪数,则会报告以下错误。

self._traceback = _extract_stack()

InvalidArgumentError (see above for traceback): Shape [-1,784] has negative dimensions
         [[Node: Placeholder = Placeholder[dtype=DT_FLOAT, shape=[?,784], _device="/job:localhost/replica:0/task:0/gpu:0"]()]]

1 个答案:

答案 0 :(得分:4)

这个问题最有可能发生,因为每次调用build_and_optimize()都会将节点添加到同一个TensorFlow图表中,tf.train.AdamOptimizer正在尝试优化以前所有图表中的变量除当前图表外。要解决此问题,请修改build_and_optimize(),使其在不同的TensorFlow图中运行main(),使用以下更改:

def build_and_optimize(hp_space):
    global Flags2
    Flags2 = {}
    Flags2['dp'] = hp_space['dropout_global']
    Flags2['wd'] = hp_space['wd']

    # Create a new, empty graph for each trial to avoid interference from
    # previous trials.
    with tf.Graph().as_default():
        res = main(Flags2)

    results = {
        'loss': res,
        'status': STATUS_OK
    }
    return results