scala如何参数化案例类,并将案例类变量传递给[T <:Product:TypeTag]

时间:2018-12-14 02:36:28

标签: scala apache-spark refactoring

// class definition of RsGoods schema
case class RsGoods(add_time: Int)

// my operation
originRDD.toDF[Schemas.RsGoods]()

// and the function definition
def toDF[T <: Product: TypeTag](): DataFrame = mongoSpark.toDF[T]()

现在我定义了太多的架构(RsGoods1,RsGoods2,RsGoods3),将来还会添加更多的架构。

所以问题是如何将案例类作为变量传递以构造代码

附加sbt依赖项

  "org.apache.spark" % "spark-core_2.11" % "2.3.0",
  "org.apache.spark" %% "spark-sql" % "2.3.0",
  "org.mongodb.spark" %% "mongo-spark-connector" % "2.3.1",

附上关键代码段

  var originRDD = MongoSpark.load(sc, readConfig)
  val df = table match {
    case "rs_goods_multi" => originRDD.toDF[Schemas.RsGoodsMulti]()
    case "rs_goods" => originRDD.toDF[Schemas.RsGoods]()
    case "ma_item_price" => originRDD.toDF[Schemas.MaItemPrice]()
    case "ma_siteuid" => originRDD.toDF[Schemas.MaSiteuid]()
    case "pi_attribute" => originRDD.toDF[Schemas.PiAttribute]()
    case "pi_attribute_name" => originRDD.toDF[Schemas.PiAttributeName]()
    case "pi_attribute_value" => originRDD.toDF[Schemas.PiAttributeValue]()
    case "pi_attribute_value_name" => originRDD.toDF[Schemas.PiAttributeValueName]()

1 个答案:

答案 0 :(得分:1)

根据我对您的要求的了解,我认为遵循此原则应该是一个不错的起点。

def readDataset[A: Encoder](
  spark: SparkSession,
  mongoUrl: String,
  collectionName: String,
  clazz: Class[A]
): Dataset[A] = {
  val config = ReadConfig(
    Map("uri" -> s"$mongoUrl.$collectionName")
  )

  val df = MongoSpark.load(spark, config)

  val fieldNames = clazz.getDeclaredFields.map(f => f.getName).dropRight(1).toList

  val dfWithMatchingFieldNames = df.toDf(fieldNames: _*)

  dfWithMatchingFieldNames.as[A]
}

您可以像这样使用它,

case class RsGoods(add_time: Int)

val spark: SparkSession = ...

import spark.implicts._

val rdGoodsDS = readDataset[RsGoods](
  spark,
  "mongodb://example.com/database",
  "rs_goods",
  classOf[RsGoods]
)

此外,以下两行

val fieldNames = clazz.getDeclaredFields.map(f => f.getName).dropRight(1).toList

val dfWithMatchingFieldNames = df.toDf(fieldNames: _*)
仅需要

是因为通常Spark会读取列名如value1, value2, ...的DataFrame。因此,我们想更改列名以匹配case class中的列名。

我不确定这些“ defalut”列的名称是什么,因为涉及到MongoSpark。

您应该首先检查在如下创建的df中的列名称,

val config = ReadConfig(
  Map("uri" -> s"$mongoUrl.$collectionName")
)

val df = MongoSpark.load(spark, config)

如果MongoSpark解决了这些“默认”列名称的问题,并从您的集合中选择了库伦名称,那么将不需要这两行,并且您的方法将变成这样,

def readDataset[A: Encoder](
  spark: SparkSession,
  mongoUrl: String,
  collectionName: String,
): Dataset[A] = {
  val config = ReadConfig(
    Map("uri" -> s"$mongoUrl.$collectionName")
  )

  val df = MongoSpark.load(spark, config)

  df.as[A]
}

然后

val rsGoodsDS = readDataset[RsGoods](
  spark,
  "mongodb://example.com/database",
  "rs_goods"
)