我正在尝试将一个numpy数组输入Process_img (adaptivethreshold)
函数中。 numpy数组的数据类型为uint8
和3 dimensions
,该值应被函数接受。
我收到以下错误消息。我尝试将其转换为grayscale
,但似乎不起作用,并且尝试了numpy.ndarray.flatten
(1 dimension)
,它可以正常运行,但无法正确显示。
我最终得到一个长长的灰色条。我不确定我还应该做什么。任何帮助表示赞赏。
错误:OpenCV(3.4.4) C:\ projects \ opencv-python \ opencv \ modules \ imgproc \ src \ thresh.cpp:1524: 错误:(-215:声明失败)src.type()== CV_8UC1在函数中 'cv :: adaptiveThreshold'
import time
import cv2
import mss
import numpy
# Attempts to change the image to black and white relative to a general area
def process_img(image):
processed_img = cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY,11,2)
return processed_img
while (True):
last_time = time.time()
# Takes a snapshot of the screen location
with mss.mss() as sct:
monitor = {"top": 40, "left": 0, "width": 960, "height": 540}
# Converts the snapshot to a numpy array
npm = numpy.array(sct.grab(monitor))
# Checks the data type of the numpy array
print (npm.dtype)
# Feeds the numpy array into the "process_img" function
new_screen = process_img(npm)
# Displays the processed image
cv2.imshow('Window',new_screen)
#This keeps the screen displayed over time instead of flickering 1ms basically the screen's refresh rate
if cv2.waitKey(1) & 0xFF == ord('q'):
cv2.destroyAllWindows()
break
答案 0 :(得分:0)
更改您的process_img()
函数以将图像转换为灰度:
def process_img(image):
image = cv2.cvtColor(image, cv2.COLOR_BGRA2GRAY)
return cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY,11,2)
此外,您还应该将with mss.mss() as sct:
移到while
之外,以保持出色表现:
import time
import cv2
import mss
import numpy
# Attempts to change the image to black and white relative to a general area
def process_img(image):
image = cv2.cvtColor(image, cv2.COLOR_BGRA2GRAY)
return cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY,11,2)
with mss.mss() as sct:
# Takes a snapshot of the screen location
monitor = {"top": 40, "left": 0, "width": 960, "height": 540}
while True:
last_time = time.time()
# Converts the snapshot to a numpy array
npm = numpy.array(sct.grab(monitor))
# Checks the data type of the numpy array
print(npm.dtype)
# Feeds the numpy array into the "process_img" function
new_screen = process_img(npm)
# Displays the processed image
cv2.imshow("Window", new_screen)
# This keeps the screen displayed over time instead of flickering 1ms basically the screen's refresh rate
if cv2.waitKey(1) & 0xFF == ord("q"):
cv2.destroyAllWindows()
break