我有一个深奥的箱线图,当我尝试使用plt.legend(“ Strings”)更改标签名称时,它会丢失标签的颜色。我需要在保持颜色编码的同时更改标签,但是在寻找答案后我不知道该怎么做。
色调传说1-4对应于1 =对政治非常感兴趣到4 =完全不感兴趣。我想将图例色相标签从1-4更改为对政治的兴趣。
我的代码是:
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
a1 = {'Reads Newspapers': 0, 'Interest in Politics': 1}
a2 = {'Reads Newspapers': 0, 'Interest in Politics': 2}
a3 = {'Reads Newspapers': 0, 'Interest in Politics': 3}
a4 = {'Reads Newspapers': 0, 'Interest in Politics': 4}
b1 = {'Reads Newspapers': 1, 'Interest in Politics': 1}
b2 = {'Reads Newspapers': 1, 'Interest in Politics': 2}
b3 = {'Reads Newspapers': 1, 'Interest in Politics': 3}
b4 = {'Reads Newspapers': 1, 'Interest in Politics': 4}
df1 = pd.DataFrame(data=a1, index=range(1))
df1 = pd.concat([df1]*23)
df2 = pd.DataFrame(data=a2, index=range(1))
df2 = pd.concat([df2]*98)
df3 = pd.DataFrame(data=a3, index=range(1))
df3 = pd.concat([df3]*99)
df4 = pd.DataFrame(data=a4, index=range(1))
df4 = pd.concat([df4]*18)
b1 = pd.DataFrame(data=b1, index=range(1))
b1 = pd.concat([b1]*468)
b2 = pd.DataFrame(data=b2, index=range(1))
b2 = pd.concat([b2]*899)
b3 = pd.DataFrame(data=b3, index=range(1))
b3 = pd.concat([b3]*413)
b4 = pd.DataFrame(data=b4, index=range(1))
b4 = pd.concat([b4]*46)
data = pd.concat([df1,df2,df3,df4,b1,b2,b3,b4])
plt.figure(figsize=(10,8))
g = sns.barplot(data=data, x='Reads Newspapers', estimator=len,y='Interest in Politics', hue='Interest in Politics' )
plt.ylabel("Sample Size")
ax = plt.subplot()
ax = ax.set_xticklabels(["No","Yes"])
#plt.legend(["very interested","somewhat interested", "only a little interested", "not at all interested "],)
#plt.savefig('Newspaper policy')
我尝试使用plt.legend
,但是当我这样做时,图例标签会失去颜色,因此它变成没有颜色关联的字符串,甚至比以前更糟。
我现在已经编辑了整个脚本。
https://github.com/HenrikMorpheus/Newspaper-reading-survey/blob/master/politicalinterest.ipynb 由于某些我不知道的原因,它加载了错误,但是您应该能够在jupyter中打开笔记本。
答案 0 :(得分:2)
一种选择是在数据框中创建带有相应标签的新列,并将该列用作hue
的输入,以便自动创建所需的标签。
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
df = pd.DataFrame({"reads" : ["Yes"] * 250 + ["No"]*150,
"interest" : [4,2,2,2,2,3,3,1,1,1]*40})
labels=["very interested","somewhat interested",
"only a little interested", "not at all interested"]
# Create new dataframe column with the labels instead of numbers
df["Interested in politics"] = df["interest"].map(dict(zip(range(1,5), labels)))
plt.figure(figsize=(10,8))
# Use newly created dataframe column as hue
ax = sns.barplot(data=df, x='reads', estimator=len,y='interest',
hue='Interested in politics', hue_order=labels)
ax.set_ylabel("Sample Size")
plt.show()
您可以通过ax.get_legend_handles_labels()
获取图例的句柄和标签,并使用它们从列表中创建带有标签的新图例。
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
df = pd.DataFrame({"reads" : ["Yes"] * 250 + ["No"]*150,
"interest" : [4,2,2,2,2,3,3,1,1,1]*40})
labels=["very interested","somewhat interested",
"only a little interested", "not at all interested"]
plt.figure(figsize=(10,8))
ax = sns.barplot(data=df, x='reads', estimator=len,y='interest', hue='interest' )
ax.set_ylabel("Sample Size")
h, l = ax.get_legend_handles_labels()
ax.legend(h, labels, title="Interested in politics")
plt.show()