在我的数据框中,每一行代表一组代码,经过一次热编码,因此数据框中有大量的布尔列。
我要选择包含代码子集的所有行,即所有给定列集的值为True的行。
示例集可能是:
code_selection = {"H045027", "S100031", "G121001", "S456005", "M743110"}
我的第一次尝试依靠DataFrame.query
并从给定的集合构建查询字符串:
def filter_codeset_1(codesets_onehot, code_selection):
"""Return only code sets that contain all of the codes in the code selection"""
query_string = " & ".join(code_selection)
return codesets_onehot.query(query_string)
这适用于小型设备,但需要相当长的时间(耗时:31.8 s)。对于大型集,它会因内存错误而崩溃:
MemoryError Traceback (most recent call last)
<ipython-input-86-8fb45d40b678> in <module>
----> 1 filtered = filter_codeset(codesets_onehot, code_selection)
<ipython-input-71-ca3fccfa21ba> in filter_codeset(codesets_onehot, code_selection)
2 """Return only code sets that contain all of the codes in the code selection"""
3 query_string = " & ".join(code_selection)
----> 4 return codesets_onehot.query(query_string)
~/anaconda3/lib/python3.7/site-packages/pandas/core/frame.py in query(self, expr, inplace, **kwargs)
2845 kwargs['level'] = kwargs.pop('level', 0) + 1
2846 kwargs['target'] = None
-> 2847 res = self.eval(expr, **kwargs)
2848
2849 try:
~/anaconda3/lib/python3.7/site-packages/pandas/core/frame.py in eval(self, expr, inplace, **kwargs)
2960 kwargs['target'] = self
2961 kwargs['resolvers'] = kwargs.get('resolvers', ()) + tuple(resolvers)
-> 2962 return _eval(expr, inplace=inplace, **kwargs)
2963
2964 def select_dtypes(self, include=None, exclude=None):
~/anaconda3/lib/python3.7/site-packages/pandas/core/computation/eval.py in eval(expr, parser, engine, truediv, local_dict, global_dict, resolvers, level, target, inplace)
294 eng = _engines[engine]
295 eng_inst = eng(parsed_expr)
--> 296 ret = eng_inst.evaluate()
297
298 if parsed_expr.assigner is None:
~/anaconda3/lib/python3.7/site-packages/pandas/core/computation/engines.py in evaluate(self)
74
75 # make sure no names in resolvers and locals/globals clash
---> 76 res = self._evaluate()
77 return _reconstruct_object(self.result_type, res, self.aligned_axes,
78 self.expr.terms.return_type)
~/anaconda3/lib/python3.7/site-packages/pandas/core/computation/engines.py in _evaluate(self)
121 truediv = scope['truediv']
122 _check_ne_builtin_clash(self.expr)
--> 123 return ne.evaluate(s, local_dict=scope, truediv=truediv)
124 except KeyError as e:
125 # python 3 compat kludge
~/anaconda3/lib/python3.7/site-packages/numexpr/necompiler.py in evaluate(ex, local_dict, global_dict, out, order, casting, **kwargs)
814 expr_key = (ex, tuple(sorted(context.items())))
815 if expr_key not in _names_cache:
--> 816 _names_cache[expr_key] = getExprNames(ex, context)
817 names, ex_uses_vml = _names_cache[expr_key]
818 arguments = getArguments(names, local_dict, global_dict)
~/anaconda3/lib/python3.7/site-packages/numexpr/necompiler.py in getExprNames(text, context)
705
706 def getExprNames(text, context):
--> 707 ex = stringToExpression(text, {}, context)
708 ast = expressionToAST(ex)
709 input_order = getInputOrder(ast, None)
~/anaconda3/lib/python3.7/site-packages/numexpr/necompiler.py in stringToExpression(s, types, context)
282 else:
283 flags = 0
--> 284 c = compile(s, '<expr>', 'eval', flags)
285 # make VariableNode's for the names
286 names = {}
MemoryError:
对于更具扩展性的实现(在不超过几秒钟的时间内用成百上千的代码查询数十万行),我有哪些选择?应该有可能非常有效地执行此操作,因为基本上需要为每一行选择一组固定的布尔值并将其与and
连接。
以下是替代实现,包括答案中建议的实现:
def filter_codeset_2(codesets_onehot, code_selection):
column_mask = codesets_onehot.columns.isin(code_selection)
return codesets_onehot[codesets_onehot.apply(lambda row: row[column_mask].all(), axis=1)]
似乎可以工作,但需要更长的时间:挂墙时间:1分22秒
def filter_codesets_3(codesets_onehot, code_selection):
codesets_onehot = codesets_onehot.reset_index(drop=True)
return codesets_onehot.loc[[set(codesets_onehot.columns[i]) == code_selection for i in codesets_onehot.values],:]
需要更长的时间才能得出空的结果:挂墙时间:1分钟5秒
def filter_codesets_4(codesets_onehot, code_selection):
columns_of_interest = list(code_selection)
len_coi = len(columns_of_interest)
return codesets_onehot.loc[codesets_onehot[columns_of_interest].sum(axis=1) == len_coi]
这有效并且与第一个版本一样快:挂墙时间:28.7 s。优点是它可以查询更大的集而不会出现内存错误。
def filter_codesets_5(codesets_onehot, code_selection):
return codesets_onehot[codesets_onehot[list(code_selection)].all(1)]
工作原理简单明了,需要:挂墙时间:30 s。我想很难仅靠熊猫来达到这个运行时间。
答案 0 :(得分:3)
再次考虑这一点,看起来很简单,只需选择感兴趣的列并调用DataFrame.all
。
df_filtered = df[df[list(code_selection)].all(1)]
通过调用np.ndarray.all
而不是DataFrame.all
可以更快。
df_filtered = df[df[list(code_selection)].values.all(1)]
使用numba
,我们可以走得更快:
from numba import njit, prange
@njit(parallel=True)
def get_mask(v, pos):
mask = [True] * v.shape[0]
for i in prange(v.shape[0]):
for j in pos:
mask[i] &= v[i, j]
return np.array(mask)
性能
np.random.seed(0)
df = pd.DataFrame(np.random.choice(2, (100000, 1000), p=[0.1, 0.9]))
code_selection = set(np.random.choice(df.columns, 20))
%timeit df[df[list(code_selection)].all(1)]
%timeit df[df[list(code_selection)].values.all(1)]
%timeit df[get_mask(df.values, df.columns.get_indexer(code_selection))]
61.2 ms ± 2.02 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
52.6 ms ± 435 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
36.1 ms ± 460 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
答案 1 :(得分:2)
我会做这样的事情-
data = [
[True, False, True],
[False, True, False],
[True, True, True],
[True, True, False],
[False, True, True]
]
df = pd.DataFrame(data, columns=['a', 'b', 'c'])
columns_of_interest = ['b', 'c']
len_coi = len(columns_of_interest)
df.loc[df[columns_of_interest].sum(axis=1) == len_coi]
这样的代码应该为您提供所需的行。
答案 2 :(得分:1)
这是一种方法:
df.loc[[set(df.columns[i]) == code_selection for i in df.values],:]
如果索引不起作用,请尝试将其删除:
df = df.reset_index(drop=True)
df.loc[[set(df.columns[i]) == code_selection for i in df.values],:]