我正在尝试从包含x
和y
变量(按变量cond
分组)的数据框中删除离群值。
我创建了一个函数,该函数可以根据箱线图统计信息删除异常值,并返回df
,而没有异常值。该功能适用于原始数据时效果很好。但是,如果将其应用于分组数据,则该功能将无法正常工作,并且我返回了一个错误:
Error in mutate_impl(.data, dots) :
Evaluation error: argument "df" is missing, with no default.
请问,如何纠正我的函数以向量df$x
和df$y
作为参数,并按组正确地排除异常值?
我的伪数据:
set.seed(955)
# Make some noisily increasing data
dat <- data.frame(cond = rep(c("A", "B"), each = 22),
xvar = c(1:10+rnorm(20,sd=3), 40, 10, 11:20+rnorm(20,sd=3), 85, 115),
yvar = c(1:10+rnorm(20,sd=3), 200, 60, 11:20+rnorm(20,sd=3), 35, 200))
removeOutliers<-function(df, ...) {
# first, identify the outliers and store them in a vector
outliers.x<-boxplot.stats(df$x)$out
outliers.y<-boxplot.stats(df$y)$out
# remove the outliers from the original data
df<-df[-which(df$x %in% outliers.x),]
df[-which(df$y %in% outliers.y),]
}
# REmove outliers (try if function works)
removeOutliers(dat)
# Apply the function to group
# Not working!!!
dat_noOutliers<- dat %>%
group_by(cond) %>%
mutate(removeOutliers)
我发现此功能可以从矢量数据中删除异常值。但是,我想从数据帧中的df$x
和df$y
向量中移除异常值。
remove_outliers <- function(x, na.rm = TRUE, ...) {
qnt <- quantile(x, probs=c(.25, .75), na.rm = na.rm, ...)
H <- 1.5 * IQR(x, na.rm = na.rm)
y <- x
y[x < (qnt[1] - H)] <- NA
y[x > (qnt[2] + H)] <- NA
y
}
答案 0 :(得分:5)
由于您正在将此功能应用于整个df,因此应改为使用mutate_all
。做:
dat_noOutliers<- dat %>%
group_by(cond) %>%
mutate_all(remove_outliers)
答案 1 :(得分:2)
您可以只过滤数据:
# Try to use a bit more memory (works only in 64-bit Java)
#options(java.parameters = "-Xmx8000m")
library(tidyverse)
set.seed(955)
dat <- data.frame(cond = rep(c("A", "B"), each = 22),
xvar = c(1:10+rnorm(20,sd=3), 40, 10, 11:20+rnorm(20,sd=3), 85, 115),
yvar = c(1:10+rnorm(20,sd=3), 200, 60, 11:20+rnorm(20,sd=3), 35, 200))
dat %>%
ggplot(aes(x = xvar, y = yvar)) +
geom_point() +
geom_smooth(method = lm) +
ggthemes::theme_hc()
由reprex package(v0.2.1)于2018-12-11创建