我正在尝试在数据帧中合并一列时间戳。时间戳的格式为0:00:00,我认为它们是字符串。我尝试使用uber.dtypes()
,但始终返回错误:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-4-b4120eada070> in <module>()
----> 1 uber.dtypes()
TypeError: 'Series' object is not callable
picture of dataframe for reference
uber["Time"].head().to_dict()
返回以下内容:
{0: '0:11:00', 1: '0:17:00', 2: '0:21:00', 3: '0:28:00', 4: '0:33:00'}
当我使用这些垃圾箱和标签时:
bins = np.arange(0, 25, 1)
labels = [
"0:00-1:00",
"1:01-2:00",
"2:01-3:00",
"3:01-4:00",
"4:01-5:00",
"5:01-6:00",
"6:01-7:00",
"7:01-8:00",
"8:01-9:00",
"9:01-10:00",
"10:01-11:00",
"11:01-12:00",
"12:01-13:00",
"13:01-14:00",
"14:01-15:00",
"15:01-16:00",
"16:01-17:00",
"17:01-18:00",
"18:01-19:00",
"19:01-20:00",
"20:01-21:00",
"21:01-22:00",
"22:01-23:00",
"23:01-24:00"
]
uber["Hour"] = pd.cut(uber["Time"], bins, labels = labels)
我收到以下错误:
TypeError: '<' not supported between instances of 'int' and 'str'
如果我将垃圾箱更改为:
bins = str(np.arange(0, 25, 1)
我收到此错误:
AxisError: axis -1 is out of bounds for array of dimension 0
我意识到我可能可以将它们转换为秒,然后我们使用pd.to_numeric()将列转换为整数,以便可以对它们进行装箱,但是我仔细阅读了文档,但仍不清楚如何使用日期时间或时间(我可以做很多事,然后乘以秒和分钟)。
1)如何使用日期时间或时间将这些时间戳转换为秒?
2)有没有一种方法可以在不将时间戳转换为秒的情况下对它们进行分类?
我还尝试了将uber [“ Time”]中的值转换为datetime.time对象,并在合并之前将它们插入新列[“ Time Object”]中:
for i in range(len(uber["Time"])):
uber.loc[i, "Time Object"] = datetime.datetime.strptime(uber.loc[i, "Time"], "%H:%M:%S").time()
如果我尝试使用[“ Time Object”]列进行装箱:
uber["Hour"] = pd.cut(uber["Time Object"], bins = 24, labels = labels)
然后我收到此错误:
TypeError: '<=' not supported between instances of 'datetime.time' and 'str'
如果我尝试使用[“ Time Object”]列的小时进行装箱:
uber [“ Hour”] = pd.cut(uber [“ Time Object”]。hour,bins = 24,labels = labels)
我收到此错误:
AttributeError: 'Series' object has no attribute 'hour'
答案 0 :(得分:1)
您可以尝试花费几分钟时间并对其进行垃圾整理
uber = pd.DataFrame()
labels = [str(i)+':01-'+str(i+1)+':00' for i in range(59)]
uber['Time'] = {0: '0:11:00', 1: '0:17:00', 2: '0:21:00', 3: '0:28:00', 4: '0:33:00'}.values()
uber.Time = pd.to_timedelta(uber.Time)
pd.cut(uber.Time.dt.seconds/60,bins,labels=labels)
出局:
0 10:01-11:00
1 16:01-17:00
2 20:01-21:00
3 27:01-28:00
4 32:01-33:00
Name: Time, dtype: category
Categories (59, object): [0:01-1:00 < 1:01-2:00 < 2:01-3:00 < 3:01-4:00 ... 55:01-56:00 < 56:01-57:00 < 57:01-58:00 < 58:01-59:00]