我正在尝试将时间序列数据分成带标签的段,如下所示:
import pandas as pd
import numpy as np
# Create example DataFrame of stock values
df = pd.DataFrame({
'ticker':np.repeat( ['aapl','goog','yhoo','msft'], 25 ),
'date':np.tile( pd.date_range('1/1/2011', periods=25, freq='D'), 4 ),
'price':(np.random.randn(100).cumsum() + 10) })
# Cut the date into sections
today = df['date'].max()
bin_edges = [pd.Timestamp.min, today - pd.Timedelta('14 days'), today - pd.Timedelta('7 days'), pd.Timestamp.max]
df['Time Group'] = pd.cut(df['date'], bins=bin_edges, labels=['history', 'previous week', 'this week'])
但是,即使bin_edges
似乎在单调增加,我也遇到了错误。
Traceback (most recent call last):
File "C:\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 3267, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-42-00524c0a883b>", line 13, in <module>
df['Time Group'] = pd.cut(df['date'], bins=bin_edges, labels=['history', 'previous week', 'this week'])
File "C:\Anaconda3\lib\site-packages\pandas\core\reshape\tile.py", line 228, in cut
raise ValueError('bins must increase monotonically.')
ValueError: bins must increase monotonically.
In[43]: bin_edges
Out[43]:
[Timestamp('1677-09-21 00:12:43.145225'),
Timestamp('2011-01-11 00:00:00'),
Timestamp('2011-01-18 00:00:00'),
Timestamp('2262-04-11 23:47:16.854775807')]
为什么会这样?
答案 0 :(得分:2)
这是熊猫中的错误。您的边缘需要转换为数值才能执行cut
,并且通过使用pd.Timestamp.min
和pd.Timestamp.max
,您实际上是在将边缘设置为可以用64位整数表示。尝试比较边缘的单调性时,这会导致溢出,这使它看起来好像不是单调的。
溢出的演示:
In [2]: bin_edges_numeric = [t.value for t in bin_edges]
In [3]: bin_edges_numeric
Out[3]:
[-9223372036854775000,
1294704000000000000,
1295308800000000000,
9223372036854775807]
In [4]: np.diff(bin_edges_numeric)
Out[4]:
array([-7928668036854776616, 604800000000000, 7928063236854775807],
dtype=int64)
在解决此问题之前,我的建议是使用更接近您实际日期的下/上,但仍能达到相同的最终结果:
first = df['date'].min()
today = df['date'].max()
bin_edges = [first - pd.Timedelta('1000 days'), today - pd.Timedelta('14 days'),
today - pd.Timedelta('7 days'), today + pd.Timedelta('1000 days')]
我任意选择了1000天,您可以根据需要选择其他值。经过这些修改,cut
应该不会引发错误。