此帖子的内容最初旨在成为 Pandas Merging 101, 但由于内容的性质和大小需要充分 出于对这个主题的公义,它已移至其自己的QnA。
给出两个简单的DataFrames;
left = pd.DataFrame({'col1' : ['A', 'B', 'C'], 'col2' : [1, 2, 3]})
right = pd.DataFrame({'col1' : ['X', 'Y', 'Z'], 'col2' : [20, 30, 50]})
left
col1 col2
0 A 1
1 B 2
2 C 3
right
col1 col2
0 X 20
1 Y 30
2 Z 50
可以计算这些框架的叉积,看起来像:
A 1 X 20
A 1 Y 30
A 1 Z 50
B 2 X 20
B 2 Y 30
B 2 Z 50
C 3 X 20
C 3 Y 30
C 3 Z 50
计算此结果最有效的方法是什么?
答案 0 :(得分:32)
让我们从建立基准开始。解决此问题的最简单方法是使用临时“键”列:
def cartesian_product_basic(left, right):
return (
left.assign(key=1).merge(right.assign(key=1), on='key').drop('key', 1))
cartesian_product_basic(left, right)
col1_x col2_x col1_y col2_y
0 A 1 X 20
1 A 1 Y 30
2 A 1 Z 50
3 B 2 X 20
4 B 2 Y 30
5 B 2 Z 50
6 C 3 X 20
7 C 3 Y 30
8 C 3 Z 50
这是如何为两个DataFrame分配一个具有相同值(例如1)的临时“键”列的。 merge
然后对“键”执行多对多JOIN。
尽管多对多JOIN技巧适用于大小合理的DataFrame,但您会在较大数据上看到相对较低的性能。
更快的实现将需要NumPy。这是一些著名的NumPy implementations of 1D cartesian product。我们可以在其中一些高性能解决方案的基础上获得所需的输出。但是,我最喜欢的是@senderle的第一个实现。
def cartesian_product(*arrays):
la = len(arrays)
dtype = np.result_type(*arrays)
arr = np.empty([len(a) for a in arrays] + [la], dtype=dtype)
for i, a in enumerate(np.ix_(*arrays)):
arr[...,i] = a
return arr.reshape(-1, la)
免责声明
这些解决方案针对具有非混合标量dtype的DataFrames进行了优化。如果处理混合dtype,请在 风险自负!
此技巧适用于任何类型的DataFrame。我们使用前面提到的cartesian_product
计算DataFrames数字索引的笛卡尔积,使用它来重新索引DataFrames,然后
def cartesian_product_generalized(left, right):
la, lb = len(left), len(right)
idx = cartesian_product(np.ogrid[:la], np.ogrid[:lb])
return pd.DataFrame(
np.column_stack([left.values[idx[:,0]], right.values[idx[:,1]]]))
cartesian_product_generalized(left, right)
0 1 2 3
0 A 1 X 20
1 A 1 Y 30
2 A 1 Z 50
3 B 2 X 20
4 B 2 Y 30
5 B 2 Z 50
6 C 3 X 20
7 C 3 Y 30
8 C 3 Z 50
np.array_equal(cartesian_product_generalized(left, right),
cartesian_product_basic(left, right))
True
并且,类似地,
left2 = left.copy()
left2.index = ['s1', 's2', 's1']
right2 = right.copy()
right2.index = ['x', 'y', 'y']
left2
col1 col2
s1 A 1
s2 B 2
s1 C 3
right2
col1 col2
x X 20
y Y 30
y Z 50
np.array_equal(cartesian_product_generalized(left, right),
cartesian_product_basic(left2, right2))
True
此解决方案可以推广到多个DataFrame。例如,
def cartesian_product_multi(*dfs):
idx = cartesian_product(*[np.ogrid[:len(df)] for df in dfs])
return pd.DataFrame(
np.column_stack([df.values[idx[:,i]] for i,df in enumerate(dfs)]))
cartesian_product_multi(*[left, right, left]).head()
0 1 2 3 4 5
0 A 1 X 20 A 1
1 A 1 X 20 B 2
2 A 1 X 20 C 3
3 A 1 X 20 D 4
4 A 1 Y 30 A 1
当处理仅两个 DataFrame时,可能会出现一个不涉及@senderle的cartesian_product
的更简单解决方案。使用np.broadcast_arrays
,我们可以达到几乎相同的性能水平。
def cartesian_product_simplified(left, right):
la, lb = len(left), len(right)
ia2, ib2 = np.broadcast_arrays(*np.ogrid[:la,:lb])
return pd.DataFrame(
np.column_stack([left.values[ia2.ravel()], right.values[ib2.ravel()]]))
np.array_equal(cartesian_product_simplified(left, right),
cartesian_product_basic(left2, right2))
True
在具有唯一索引的某些人为设计的DataFrame上对这些解决方案进行基准测试,我们拥有
请注意,时间可能会根据您的设置,数据和对cartesian_product
帮助功能的选择而有所不同。
性能基准测试代码
这是时间脚本。上面定义了此处调用的所有功能。
from timeit import timeit
import pandas as pd
import matplotlib.pyplot as plt
res = pd.DataFrame(
index=['cartesian_product_basic', 'cartesian_product_generalized',
'cartesian_product_multi', 'cartesian_product_simplified'],
columns=[1, 10, 50, 100, 200, 300, 400, 500, 600, 800, 1000, 2000],
dtype=float
)
for f in res.index:
for c in res.columns:
# print(f,c)
left2 = pd.concat([left] * c, ignore_index=True)
right2 = pd.concat([right] * c, ignore_index=True)
stmt = '{}(left2, right2)'.format(f)
setp = 'from __main__ import left2, right2, {}'.format(f)
res.at[f, c] = timeit(stmt, setp, number=5)
ax = res.div(res.min()).T.plot(loglog=True)
ax.set_xlabel("N");
ax.set_ylabel("time (relative)");
plt.show()
答案 1 :(得分:7)
使用itertools
product
并在数据框中重新创建值
import itertools
l=list(itertools.product(left.values.tolist(),right.values.tolist()))
pd.DataFrame(list(map(lambda x : sum(x,[]),l)))
0 1 2 3
0 A 1 X 20
1 A 1 Y 30
2 A 1 Z 50
3 B 2 X 20
4 B 2 Y 30
5 B 2 Z 50
6 C 3 X 20
7 C 3 Y 30
8 C 3 Z 50
答案 2 :(得分:4)