我必须设计一个程序以使用回溯来解决NxN数独,N可以是1,4,9,16。
我设法构建了一个解决4x4板的程序,但对于9x9板及以上,我对如何搜索网格一无所知。
到目前为止,我的代码如下。
一种方法将如何搜索正方形(n)x正方形(n)网格?
def is_solved(board, n):
# If board is not solved, return False.
for x in range(n): # vertical coordinate
for y in range(n): # horizontal coordinate
if board[x][y] == 0: # zero representing an empty cell
return False
return True # else, the board is filled and solved, return True
def find_possibilities(board, i, j, n):
# Finds all possible numbers of an entry
possible_entries = {}
# initialize a dictionary with possible numbers to fill board
for num in range(1, n+1):
possible_entries[num] = 0
# horizontal
for y in range(0, n):
if not board[i][y] == 0: # current position is not 0, not empty
possible_entries[board[i][y]] = 1
# vertical
for x in range(0, n):
if not board[x][j] == 0:
possible_entries[board[x][j]] = 1
for num in range(1, n+1):
if possible_entries[num] == 0:
possible_entries[num] = num
else:
possible_entries[num] = 0
return possible_entries
def sudoku_solver(board):
n = len(board)
i = 0
j = 0
if is_solved(board, n):
print(board)
return True
else:
# find the first empty cell
for x in range(0, n):
for y in range(0, n):
if board[x][y] == 0:
i = x
j = y
break
# find all possibilities to fill board[i][j]
possibilities = find_possibilities(board, i, j, n)
for x in range(1, n + 1):
if not possibilities[x] == 0:
board[i][j] = possibilities[x]
return sudoku_solver(board)
# backtracking step
board[i][j] = 0 # resets the cell to an empty cell
def solve_sudoku(board):
if sudoku_solver(board):
return True
else:
return False
答案 0 :(得分:0)
在我看来,您想添加第三条检查线以覆盖当前单元格所在的网格。对于任何板子尺寸,我们都可以假定网格将是板子尺寸的平方根
然后,每个单元格将位于一个列,该列的最小列数为int(i / math.sqrt(n))
,最大列数为int(column_minimum + i % math.sqrt(n))
,最小行数为int(j / math.sqrt(n))
,最大值为int(row_minimum + j % math.sqrt(n))
。
以与行和列检查相同的方式遍历行和列,并进行处理,应该可以进行最终检查。
此解决方案有效:
# surrounding grid
gridsize = int(math.sqrt(n))
minrow = i - int(i%gridsize)
maxrow = minrow + gridsize - 1
mincol = j - int(j%gridsize)
maxcol = mincol + gridsize - 1
for x in range(minrow, maxrow+1):
for y in range(mincol, maxcol+1):
if not board[x][y] == 1:
possible_entries[board[x][y]] = 1