Python Sudoko求解器-回溯

时间:2018-12-09 13:46:42

标签: python

我必须设计一个程序以使用回溯来解决NxN数独,N可以是1,4,9,16。

我设法构建了一个解决4x4板的程序,但对于9x9板及以上,我对如何搜索网格一无所知。

到目前为止,我的代码如下。

一种方法将如何搜索正方形(n)x正方形(n)网格?

def is_solved(board, n):
    # If board is not solved, return False.
    for x in range(n):  # vertical coordinate
        for y in range(n):  # horizontal coordinate
            if board[x][y] == 0:  # zero representing an empty cell
                return False
    return True  # else, the board is filled and solved, return True


def find_possibilities(board, i, j, n):
    # Finds all possible numbers of an entry
    possible_entries = {}

    # initialize a dictionary with possible numbers to fill board
    for num in range(1, n+1):
        possible_entries[num] = 0

    # horizontal
    for y in range(0, n):
        if not board[i][y] == 0:  # current position is not 0, not empty
            possible_entries[board[i][y]] = 1

    # vertical
    for x in range(0, n):
        if not board[x][j] == 0:
            possible_entries[board[x][j]] = 1

    for num in range(1, n+1):
        if possible_entries[num] == 0:
            possible_entries[num] = num
        else:
            possible_entries[num] = 0

    return possible_entries


def sudoku_solver(board):
    n = len(board)
    i = 0
    j = 0

    if is_solved(board, n):
        print(board)
        return True
    else:
        # find the first empty cell
        for x in range(0, n):
            for y in range(0, n):
                if board[x][y] == 0:
                    i = x
                    j = y
                    break

        # find all possibilities to fill board[i][j]
        possibilities = find_possibilities(board, i, j, n)

        for x in range(1, n + 1):
            if not possibilities[x] == 0:
                board[i][j] = possibilities[x]
                return sudoku_solver(board)
        # backtracking step
        board[i][j] = 0  # resets the cell to an empty cell


def solve_sudoku(board):
    if sudoku_solver(board):
        return True
    else:
        return False

1 个答案:

答案 0 :(得分:0)

在我看来,您想添加第三条检查线以覆盖当前单元格所在的网格。对于任何板子尺寸,我们都可以假定网格将是板子尺寸的平方根

然后,每个单元格将位于一个列,该列的最小列数为int(i / math.sqrt(n)),最大列数为int(column_minimum + i % math.sqrt(n)),最小行数为int(j / math.sqrt(n)),最大值为int(row_minimum + j % math.sqrt(n))

以与行和列检查相同的方式遍历行和列,并进行处理,应该可以进行最终检查。

此解决方案有效:

# surrounding grid
gridsize = int(math.sqrt(n))
minrow = i -  int(i%gridsize)
maxrow = minrow + gridsize - 1
mincol = j - int(j%gridsize)
maxcol = mincol + gridsize - 1
for x in range(minrow, maxrow+1):
    for y in range(mincol, maxcol+1):
        if not board[x][y] == 1:
            possible_entries[board[x][y]] = 1