这里http://www.python.org/doc/essays/graphs/是DFS吗?
我尝试用'兄弟姐妹'做点什么,但它不起作用。 任何人都可以写BFS类似于该网站的代码。
答案 0 :(得分:8)
是的,它是DFS。
要编写BFS,您只需要保留“待办事项”队列。您可能还希望将该函数转换为生成器,因为通常在生成所有可能的路径之前故意结束BFS。因此,此函数可用于find_path或find_all_paths。
def paths(graph, start, end):
todo = [[start, [start]]]
while 0 < len(todo):
(node, path) = todo.pop(0)
for next_node in graph[node]:
if next_node in path:
continue
elif next_node == end:
yield path + [next_node]
else:
todo.append([next_node, path + [next_node]])
以及如何使用它的一个例子:
graph = {'A': ['B', 'C'],
'B': ['C', 'D'],
'C': ['D'],
'D': ['C'],
'E': ['F'],
'F': ['C']}
for path in paths(graph, 'A', 'D'):
print path
答案 1 :(得分:1)
这是一个O(N * max(顶点度))广度优先搜索实现。 bfs函数以广度优先顺序生成节点,并且每个生成器可用于跟踪返回起始点的最短路径。路径的惰性意味着您可以遍历生成的节点来查找您感兴趣的点,而无需支付构建所有中间路径的成本。
import collections
GRAPH = {'A': ['B', 'C'],
'B': ['C', 'D'],
'C': ['D'],
'D': ['C'],
'E': ['F'],
'F': ['C']}
def build_path(node, previous_map):
while node:
yield node
node = previous_map.get(node)
def bfs(start, graph):
previous_map = {}
todo = collections.deque()
todo.append(start)
while todo:
node = todo.popleft()
yield node, build_path(node, previous)
for next_node in graph.get(node, []):
if next_node not in previous_map:
previous_map[next_node] = node
todo.append(next_node)
for node, path in bfs('A', GRAPH):
print node, list(path)
答案 2 :(得分:0)
def recursive_dfs(graph, start, path=[]):
'''recursive depth first search from start'''
path=path+[start]
for node in graph[start]:
if not node in path:
path=recursive_dfs(graph, node, path)
return path
def iterative_dfs(graph, start, path=[]):
'''iterative depth first search from start'''
q=[start]
while q:
v=q.pop(0)
if v not in path:
path=path+[v]
q=graph[v]+q
return path
def iterative_bfs(graph, start, path=[]):
'''iterative breadth first search from start'''
q=[start]
while q:
v=q.pop(0)
if not v in path:
path=path+[v]
q=q+graph[v]
return path
'''
+---- A
| / \
| B--D--C
| \ | /
+---- E
'''
graph = {'A':['B','C'],'B':['D','E'],'C':['D','E'],'D':['E'],'E':['A']}
print 'recursive dfs ', recursive_dfs(graph, 'A')
print 'iterative dfs ', iterative_dfs(graph, 'A')
print 'iterative bfs ', iterative_bfs(graph, 'A')