对于那些在多面网格中具有标签的标签,我想要更长的刻度线。因此,我研究了this attempt,并尝试将其调整为像这样的多面网格图:
定义次要和主要的休息和标签:
range.f <- range(unique(df1$weeks))
minor.f <- 1 # every 1 week, NOTE: range.f[2] should be divisible by minor.f!
major.f <- 5 # every 5 weeks
breaks.f <- seq(range.f[1], range.f[2], minor.f)
every_nth.lt <- function (x, nth) {x[1:nth != 1] <- ""; x}
# (lite version of https://stackoverflow.com/a/34533473/6574038
# works better for me than `insert_minor()`)
labels.f <- every_nth.lt(sequence(range.f[2]), major.f)
n_minor.f <- major.f / minor.f - 1
正态图:
library(ggplot2)
p.f <- ggplot(df1, aes(weeks, births)) +
geom_bar(stat="identity", fill="#F48024") + theme_bw() +
scale_x_continuous(breaks=breaks.f, labels=labels.f) +
coord_cartesian(xlim=range.f) +
facet_wrap(year ~ .) +
theme(panel.grid = element_blank(),
axis.text.x = element_text(margin=margin(t=5, unit="pt")))
操作图:
g.f <- ggplotGrob(p.f)
xaxis.f <- g.f$grobs[grep("^axis-b", g.f$layout$name)] # get x-axes
ticks.f <- do.call(c, lapply(lapply(xaxis.f, "["),
function(x) x$children[[2]])) # get ticks
marks.f <- ticks.f$grobs[[1]] # get tick marks
# editing y-positions of tick marks
marks.f$y <- unit.c(unit.c(unit(1, "npc") - unit(6, "pt"),
unit(1, "npc"),
rep(unit.c(unit(1, "npc") - unit(3, "pt"),
unit(1, "npc")), n_minor.f)))
# putting tick marks back into plot
ticks.f$grobs[[1]] <- marks.f
for(i in seq_along(xaxis.f)) {
xaxis.f[[i]]$children[[2]]$grob <- ticks.f[[i]]
}
g.f$grobs[grep("^axis-b", g.f$layout$name)] <- xaxis.f
绘制图:
library(grid)
grid.newpage()
grid.draw(g.f)
产量:
我按照链接答案的所有步骤进行了操作,只是将其调整为适用于grob中有列表的情况。但是,较长的刻度不会出现。
有人看到我做错了吗?
或者,也许还有另一种方法来延长那些带有标签的轴刻度的轴刻度吗?
预期输出:
最后,所有三个图的刻度线应如下所示:
数据:
tmp <- data.frame(date=as.Date(sample(1:1095, 10000, replace=TRUE),
origin="2014-01-01"),
births=sample(0:10, 10000, replace=TRUE))
tmp$year <- factor(substr(tmp$date, 1, 4))
df1 <- aggregate(births ~ date + year, tmp, sum)
rm(tmp) # remove tmp
df1$weeks <- as.integer(strftime(lubridate::floor_date(as.Date(df1$date,
format="%m/%d/%Y"),
unit="week"), "%W")) + 1
答案 0 :(得分:2)
我相信您可以对此进行改进。我只是仔细研究了一下,然后将东西正确拉出,然后放回去。通常是通过将其与单个图进行比较,然后使其遍历一组杂项来实现的。
范围和中断可能需要更改,因为它们都相同,但是使用不同的x-axes
,您可以适当地自定义中断。
tmp <- data.frame(date=as.Date(sample(1:1095, 10000, replace=TRUE),
origin="2014-01-01"),
births=sample(0:10, 10000, replace=TRUE))
tmp$year <- factor(substr(tmp$date, 1, 4))
df1 <- aggregate(births ~ date + year, tmp, sum)
rm(tmp) # remove tmp
df1$weeks <- as.integer(strftime(lubridate::floor_date(as.Date(df1$date,
format="%m/%d/%Y"),
unit="week"), "%W")) + 1
# breaks and labels, minor and major
range.f <- 1:(max(unique(df1$weeks)))
minor.f <- 1 # every 1 week, NOTE: range.f[2] should be divisible by minor.f!
major.f <- 5 # every 5 weeks
breaks.f <- seq(min(range.f), max(range.f), minor.f)
every_nth.lt <- function (x, nth) {x[1:nth != 1] <- ""; x}
# (lite version of https://stackoverflow.com/a/34533473/6574038)
labels.f <- every_nth.lt(range.f, major.f)
n_minor.f <- major.f / minor.f - 1
# plot
library(ggplot2)
library(grid)
p.f <- ggplot(df1, aes(weeks, births)) +
geom_bar(stat="identity", fill="#F48024") + theme_bw() +
scale_x_continuous(breaks=breaks.f, labels=labels.f) +
coord_cartesian(xlim=range.f) +
facet_wrap(year ~ .) +
theme(panel.grid = element_blank(),
axis.text.x = element_text(margin=margin(t=5, unit="pt")))
# manipulating plot
g.f <- ggplotGrob(p.f)
xaxis.f <- g.f$grobs[grep("^axis-b", g.f$layout$name)] # get x-axes
ticks.f <- c()
for(i in seq_along(xaxis.f)) {
ticks.f[[i]] <- xaxis.f[[i]]$children[[2]]
}
marks.f <- c()
for(i in seq_along(ticks.f)) {
marks.f[[i]] <- ticks.f[[i]][1]$grobs
}
# editing y-positions of tick marks
for(i in seq_along(marks.f)) {
marks.f[[i]][[1]]$y <- unit.c(unit.c(unit(1, "npc") - unit(6, "pt"),
unit(1, "npc"),
rep(unit.c(unit(1, "npc") - unit(3, "pt"),
unit(1, "npc")), n_minor.f)))
}
# putting tick marks back into plot
for(i in seq_along(ticks.f)) {
ticks.f[[i]]$grobs[[1]] <- marks.f[[i]][[1]]
}
for(i in seq_along(xaxis.f)) {
xaxis.f[[i]]$children[[2]] <- ticks.f[[i]]
}
g.f$grobs[grep("^axis-b", g.f$layout$name)] <- xaxis.f
# plot
grid.newpage()
grid.draw(g.f)
答案 1 :(得分:2)
这是我开始的方式的修改后的代码,其中包含更少的sample_json = {}
counter = 0
for data in sample:
sample_json[counter] = data
counter += 1
# Output from sample_json
# {0: {'a': 'a', 'b': 'b'}, 1: {'a': 'a', 'b': 'b'}}
循环。
keys
for