在我的数据框中,我有一些分类列,其中包含100多个不同的类别。我想按最频繁的类别进行排名。我保留了前9个最频繁的类别,而较不频繁的类别则通过以下方式自动重命名:OTHER
示例:
这是我的df:
print(df)
Employee_number Jobrol
0 1 Sales Executive
1 2 Research Scientist
2 3 Laboratory Technician
3 4 Sales Executive
4 5 Research Scientist
5 6 Laboratory Technician
6 7 Sales Executive
7 8 Research Scientist
8 9 Laboratory Technician
9 10 Sales Executive
10 11 Research Scientist
11 12 Laboratory Technician
12 13 Sales Executive
13 14 Research Scientist
14 15 Laboratory Technician
15 16 Sales Executive
16 17 Research Scientist
17 18 Research Scientist
18 19 Manager
19 20 Human Resources
20 21 Sales Executive
valCount = df['Jobrol'].value_counts()
valCount
Sales Executive 7
Research Scientist 7
Laboratory Technician 5
Manager 1
Human Resources 1
我保留前3个类别,然后用“ OTHER”重命名其余类别,应该如何进行?
谢谢。
答案 0 :(得分:3)
将您的系列转换为分类类别,提取计数不在前3位的类别,然后添加一个新类别,例如'Other'
,然后替换先前计算的类别:
df['Jobrol'] = df['Jobrol'].astype('category')
others = df['Jobrol'].value_counts().index[3:]
label = 'Other'
df['Jobrol'] = df['Jobrol'].cat.add_categories([label])
df['Jobrol'] = df['Jobrol'].replace(others, label)
注意:通过df['Jobrol'].cat.rename_categories(dict.fromkeys(others, label))
重命名类别来组合类别是很诱人的,但这是行不通的,因为这意味着多个标记相同的类别,不可能。
上述解决方案可以调整为按 count 进行过滤。例如,要仅包括计数为1的类别,可以这样定义others
:
counts = df['Jobrol'].value_counts()
others = counts[counts == 1].index
答案 1 :(得分:2)
将value_counts
与numpy.where
一起使用:
need = df['Jobrol'].value_counts().index[:3]
df['Jobrol'] = np.where(df['Jobrol'].isin(need), df['Jobrol'], 'OTHER')
valCount = df['Jobrol'].value_counts()
print (valCount)
Research Scientist 7
Sales Executive 7
Laboratory Technician 5
OTHER 2
Name: Jobrol, dtype: int64
另一种解决方案:
N = 3
s = df['Jobrol'].value_counts()
valCount = s.iloc[:N].append(pd.Series(s.iloc[N:].sum(), index=['OTHER']))
print (valCount)
Research Scientist 7
Sales Executive 7
Laboratory Technician 5
OTHER 2
dtype: int64
答案 2 :(得分:0)
单行解决方案:
limit = 500
df['Jobrol'] = df['Jobrol'].map({x[0]: x[0] if x[1] > limit else 'other' for x in dict(df['Jobrol'].value_counts()).items()})