C ++:从离散分布中采样而无需替换

时间:2018-12-05 12:33:11

标签: c++ distribution sampling

我想从一个不连续的分布中取样而不进行替换(即不重复)。

使用函数 discrete_distribution ,可以进行替换采样。而且,借助此功能,我以非常粗糙的方式实现了无需替换的采样:

#include <iostream>
#include <random>
#include <vector>
#include <array>

int main()
{
    const int sampleSize = 8;   // Size of the sample
    std::vector<double> weights = {2,2,1,1,2,2,1,1,2,2}; // 10 possible outcome with different weights

    std::random_device rd;
    std::mt19937 generator(rd());

    /// WITH REPLACEMENT

    std::discrete_distribution<int> distribution(weights.begin(), weights.end()); 

    std::array<int, 10> p ={};
    for(int i=0; i<sampleSize; ++i){
        int number = distribution(generator);
        ++p[number];
    }

    std::cout << "Discrete_distribution with replacement:" << std::endl;
    for (int i=0; i<10; ++i)
    std::cout << i << ": " << std::string(p[i],'*') << std::endl;


    /// WITHOUT REPLACEMENT

    p = {};
    for(int i=0; i<sampleSize; ++i){
        std::discrete_distribution<int> distribution(weights.begin(), weights.end()); 
        int number = distribution(generator);
        weights[number] = 0; // the weight associate to the sampled value is set to 0
        ++p[number];
    }

    std::cout << "Discrete_distribution without replacement:" << std::endl;
    for (int i=0; i<10; ++i)
    std::cout << i << ": " << std::string(p[i],'*') << std::endl;


    return 0;
}

您曾经编码过这种采样而无需替换吗?可能以更优化的方式?

谢谢。

干杯

T.A。

2 个答案:

答案 0 :(得分:0)

此解决方案可能会短一些。不幸的是,它需要在每个步骤中创建一个discrete_distribution<>对象,这在绘制大量样本时可能会禁止这样做。

#include <iostream>
#include <boost/random/discrete_distribution.hpp>
#include <boost/random/mersenne_twister.hpp>

using namespace boost::random;

int main(int, char**) {
    std::vector<double> w = { 2, 2, 1, 1, 2, 2, 1, 1, 2, 2 };
    discrete_distribution<> dist(w);
    int n = 10;
    boost::random::mt19937 gen;
    std::vector<int> samples;
    for (auto i = 0; i < n; i++) {
        samples.push_back(dist(gen));
        w[*samples.rbegin()] = 0;
        dist = discrete_distribution<>(w);
    }
    for (auto iter : samples) {
        std::cout << iter << " ";
    }

    return 0;
}

改进的答案:

在这个站点(Faster weighted sampling without replacement)上仔细寻找类似问题后,我发现了一种无需替换的加权采样惊人简单的算法,在C ++中实现起来有点复杂。请注意,这不是最有效的算法,但在我看来,这是最简单的算法。

https://doi.org/10.1016/j.ipl.2005.11.003中详细描述了该方法。

尤其是,如果样本量远小于基本人群,那将是无效的。

#include <iostream>
#include <iterator>
#include <boost/random/uniform_01.hpp>
#include <boost/random/mersenne_twister.hpp>

using namespace boost::random;

int main(int, char**) {
    std::vector<double> w = { 2, 2, 1, 1, 2, 2, 1, 1, 2, 10 };
    uniform_01<> dist;
    boost::random::mt19937 gen;
    std::vector<double> vals;
    std::generate_n(std::back_inserter(vals), w.size(), [&dist,&gen]() { return dist(gen); });
    std::transform(vals.begin(), vals.end(), w.begin(), vals.begin(), [&](auto r, auto w) { return std::pow(r, 1. / w); });
    std::vector<std::pair<double, int>> valIndices;
    size_t index = 0;
    std::transform(vals.begin(), vals.end(), std::back_inserter(valIndices), [&index](auto v) { return std::pair<double,size_t>(v,index++); });
    std::sort(valIndices.begin(), valIndices.end(), [](auto x, auto y) { return x.first > y.first; });
    std::vector<int> samples;
    std::transform(valIndices.begin(), valIndices.end(), std::back_inserter(samples), [](auto v) { return v.second; });

    for (auto iter : samples) {
        std::cout << iter << " ";
    }

    return 0;
}

更简单的答案

我刚刚删除了一些STL函数,并用简单的for循环代替了它。

#include <iostream>
#include <iterator>
#include <boost/random/uniform_01.hpp>
#include <boost/random/mersenne_twister.hpp>
#include <algorithm>

using namespace boost::random;

int main(int, char**) {
    std::vector<double> w = { 2, 2, 1, 1, 2, 2, 1, 1, 2, 1000 };
    uniform_01<> dist;
    boost::random::mt19937 gen(342575235);
    std::vector<double> vals;
    for (auto iter : w) {
        vals.push_back(std::pow(dist(gen), 1. / iter));
    }
    // Sorting vals, but retain the indices. 
    // There is unfortunately no easy way to do this with STL.
    std::vector<std::pair<int, double>> valsWithIndices;
    for (size_t iter = 0; iter < vals.size(); iter++) {
        valsWithIndices.emplace_back(iter, vals[iter]);
    }
    std::sort(valsWithIndices.begin(), valsWithIndices.end(), [](auto x, auto y) {return x.second > y.second; });

    std::vector<size_t> samples;
    int sampleSize = 8;
    for (auto iter = 0; iter < sampleSize; iter++) {
        samples.push_back(valsWithIndices[iter].first);
    }
    for (auto iter : samples) {
        std::cout << iter << " ";
    }

    return 0;
}

答案 1 :(得分:0)

Aleph0 的现有答案在我测试过的答案中效果最好。我尝试对原始解决方案、Aleph0 添加的解决方案和新解决方案进行基准测试,其中只有在现有解决方案超过 50% 的已添加项目时才创建新的 discrete_distribution(当分布产生样本中已有的项目时重绘) ).

我用样本大小==人口大小进行了测试,权重等于指数。我认为问题中的原始解决方案在 O(n^2) 中运行,我的新解决方案在 O(n logn) 中运行,而论文中的解决方案似乎在 O(n) 中运行。

-------------------------------------------------------------
Benchmark                   Time             CPU   Iterations
-------------------------------------------------------------
BM_Reuse             25252721 ns     25251731 ns           26
BM_NewDistribution   17338706125 ns  17313620000 ns         1
BM_SomePaper         6789525 ns      6779400 ns           100

代码:

#include <array>
#include <benchmark/benchmark.h>
#include <boost/random/mersenne_twister.hpp>
#include <boost/random/uniform_01.hpp>
#include <iostream>
#include <iterator>
#include <random>
#include <vector>

const int sampleSize = 20000;

using namespace boost::random;

static void BM_ReuseDistribution(benchmark::State &state) {
  std::vector<double> weights;
  weights.resize(sampleSize);

  for (auto _ : state) {
    for (int i = 0; i < sampleSize; i++) {
      weights[i] = i + 1;
    }
    std::random_device rd;
    std::mt19937 generator(rd());
    int o[sampleSize];
    std::discrete_distribution<int> distribution(weights.begin(),
                                                 weights.end());
    int numAdded = 0;
    int distSize = sampleSize;
    for (int i = 0; i < sampleSize; ++i) {
      if (numAdded > distSize / 2) {
        distSize -= numAdded;
        numAdded = 0;
        distribution =
            std::discrete_distribution<int>(weights.begin(), weights.end());
      }

      int number = distribution(generator);
      if (!weights[number]) {
        i -= 1;
        continue;
      } else {
        weights[number] = 0;
        o[i] = number;
        numAdded += 1;
      }
    }
  }
}

BENCHMARK(BM_ReuseDistribution);

static void BM_NewDistribution(benchmark::State &state) {
  std::vector<double> weights;
  weights.resize(sampleSize);

  for (auto _ : state) {
    for (int i = 0; i < sampleSize; i++) {
      weights[i] = i + 1;
    }
    std::random_device rd;
    std::mt19937 generator(rd());
    int o[sampleSize];

    for (int i = 0; i < sampleSize; ++i) {
      std::discrete_distribution<int> distribution(weights.begin(),
                                                   weights.end());
      int number = distribution(generator);
      weights[number] = 0;
      o[i] = number;
    }
  }
}

BENCHMARK(BM_NewDistribution);

static void BM_SomePaper(benchmark::State &state) {
  std::vector<double> w;
   w.resize(sampleSize);
  for (auto _ : state) {
    for (int i = 0; i < sampleSize; i++) {
      w[i] = i + 1;
    }

    uniform_01<> dist;
    boost::random::mt19937 gen;
    std::vector<double> vals;
    std::generate_n(std::back_inserter(vals), w.size(),
                    [&dist, &gen]() { return dist(gen); });
    std::transform(vals.begin(), vals.end(), w.begin(), vals.begin(),
                   [&](auto r, auto w) { return std::pow(r, 1. / w); });
    std::vector<std::pair<double, int>> valIndices;
    size_t index = 0;
    std::transform(
        vals.begin(), vals.end(), std::back_inserter(valIndices),
        [&index](auto v) { return std::pair<double, size_t>(v, index++); });
    std::sort(valIndices.begin(), valIndices.end(),
              [](auto x, auto y) { return x.first > y.first; });
    std::vector<int> samples;
    std::transform(valIndices.begin(), valIndices.end(),
                   std::back_inserter(samples),
                   [](auto v) { return v.second; });
  }
}

BENCHMARK(BM_SomePaper);

BENCHMARK_MAIN();