请考虑以下我的数据字段子集:
Pack side row col v1 v2
1 P1 Left 1 1 0.4094 -3.8700
2 P1 Right 1 1 0.4110 -3.5245
3 P1 Left 1 2 0.4118 -3.4876
4 P1 Right 1 2 0.4108 -3.7268
5 P1 Left 1 3 0.4119 -3.5322
6 P1 Right 1 3 0.4110 -3.6101
我对v1和v2左右之间的差异感兴趣,特别是v1的百分比差异和v2的直线差异。
我想要的输出是一个新的数据字段,如下所示:
Pack row col dv1 dv2
1 P1 1 1 0.389294404 0.3455
2 P1 1 2 -0.243427459 -0.2392
3 P1 1 3 -0.218978102 -0.0779
其中,对于v1,dv1的计算是(Right-Left)/Left*100
,对于v2,dv2的计算是Right-Left
。
这是df数据:
df <- structure(list(Pack = structure(c(1L, 1L, 1L, 1L, 1L, 1L), .Label = c("P1",
"P2", "P3", "P4"), class = "factor"), side = structure(c(1L,
2L, 1L, 2L, 1L, 2L), .Label = c("Left", "Right"), class = "factor"),
row = c(1L, 1L, 1L, 1L, 1L, 1L), col = c(1L, 1L, 2L, 2L,
3L, 3L), v1 = c(0.4094, 0.411, 0.4118, 0.4108, 0.4119, 0.411
), v2 = c(-3.87, -3.5245, -3.4876, -3.7268, -3.5322, -3.6101
)), .Names = c("Pack", "side", "row", "col", "v1", "v2"), row.names = c(NA,
6L), class = "data.frame")
谢谢!
答案 0 :(得分:2)
我们可以首先按side
对行进行排序,并确保首先有Left
,然后是Right
。这给出了
library(tidyverse)
df %>% arrange(side) %>% group_by(Pack, row, col) %>%
summarise(dv1 = (v1[2] - v1[1]) / v1[1] * 100, dv2 = v2[2] - v2[1])
# A tibble: 3 x 5
# Groups: Pack, row [?]
# Pack row col dv1 dv2
# <fct> <int> <int> <dbl> <dbl>
# 1 P1 1 1 0.391 0.345
# 2 P1 1 2 -0.243 -0.239
# 3 P1 1 3 -0.218 -0.0779
或者只是
df %>% arrange(side) %>% group_by(Pack, row, col) %>%
summarise(dv1 = diff(v1) / v1[1] * 100, dv2 = diff(v2))
答案 1 :(得分:1)
另一种使用dplyr
和lead
的{{1}}方法
mutate
编辑-更改了过滤器以删除偶数行号