这是我的df
(data.frame):
group value
1 10
1 20
1 25
2 5
2 10
2 15
我需要按组计算连续行中值之间的差异。
所以,我需要一个结果。
group value diff
1 10 NA # because there is a no previous value
1 20 10 # value[2] - value[1]
1 25 5 # value[3] value[2]
2 5 NA # because group is changed
2 10 5 # value[5] - value[4]
2 15 5 # value[6] - value[5]
虽然,我可以使用ddply
来解决这个问题,但这需要花费太多时间。这是因为我的df
中有很多小组。 (我df
中的超过1,000,000个组)
还有其他有效方法可以解决这个问题吗?
答案 0 :(得分:64)
包data.table
可以使用shift
函数快速完成此操作。
require(data.table)
df <- data.table(group = rep(c(1, 2), each = 3), value = c(10,20,25,5,10,15))
#setDT(df) #if df is already a data frame
df[ , diff := value - shift(value), by = group]
# group value diff
#1: 1 10 NA
#2: 1 20 10
#3: 1 25 5
#4: 2 5 NA
#5: 2 10 5
#6: 2 15 5
setDF(df) #if you want to convert back to old data.frame syntax
或使用lag
dplyr
功能
df %>%
group_by(group) %>%
mutate(Diff = value - lag(value))
# group value Diff
# <int> <int> <int>
# 1 1 10 NA
# 2 1 20 10
# 3 1 25 5
# 4 2 5 NA
# 5 2 10 5
# 6 2 15 5
对于data.table::shift
之前和[{1}}之前的备选方案,请参阅修改。
答案 1 :(得分:18)
您可以使用基本功能ave()
来实现此功能
df <- data.frame(group=rep(c(1,2),each=3),value=c(10,20,25,5,10,15))
df$diff <- ave(df$value, factor(df$group), FUN=function(x) c(NA,diff(x)))
返回
group value diff
1 1 10 NA
2 1 20 10
3 1 25 5
4 2 5 NA
5 2 10 5
6 2 15 5
答案 2 :(得分:4)
尝试使用tapply
df$diff<-as.vector(unlist(tapply(df$value,df$group,FUN=function(x){ return (c(NA,diff(x)))})))