我在论坛中进行了搜索,但仅找到相似但不同的答案和问题。我从z值矩阵开始绘制3D直方图时遇到问题。
这是我从以前的操作中获得的矩阵:
[[ 84. 80.76923077 68.05555556 56.57894737 60.
44.7761194 55.2238806 39.0625 27.41935484 29.8245614 ]
[ 82.44274809 67.70833333 63.75 44.44444444 47.76119403
33.33333333 22.78481013 19.23076923 9.21052632 2.63157895]
[ 53.33333333 61.76470588 48.64864865 34.61538462 0.
16.66666667 0. 0. 0. 0. ]
[ 48. 25. 0. 0. 0.
0. 0. 0. 0. 0. ]]
这些都是z值。 x和y值只是它们在矩阵中的位置。 我刚刚看过matplotlib页面,但所有示例均从x,y值开始。我也在论坛上看过,但是这个问题略有不同。
我正在尝试类似的东西:
hist, xedges, yedges = np.histogram2d(x, y, bins=(20,20))
xpos, ypos = np.meshgrid(xedges[:-1]+xedges[1:], yedges[:-1]+yedges[1:])
dx = xedges [1] - xedges [0]
dy = yedges [1] - yedges [0]
dz = hist.flatten()
ax.bar3d(xpos, ypos, zpos, dx, dy, dz, zsort='average')
但是我在理解如何输入x,y值时遇到麻烦。 有人可以帮助我吗?
更新:
len_x, len_y = matrix.shape
x = np.linspace(0,len_x-1,len_x)
y = np.linspace(0,len_y-1,len_y)
# 3D PLOT:
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
hist, xedges, yedges = np.histogram2d(x,y)
xpos, ypos = np.meshgrid(xedges[:-1]+xedges[1:], yedges[:-1]+yedges[1:])
xpos = xpos.flatten()/2.
ypos = ypos.flatten()/2.
zpos = np.zeros_like(xpos)
dx = xedges [1] - xedges [0]
dy = yedges [1] - yedges [0]
dz = hist.flatten()
max_height = np.max(dz)
min_height = np.min(dz)
ax.bar3d(xpos, ypos, zpos, dx, dy, dz, zsort='average')
答案 0 :(得分:1)
不确定要获取什么。尝试以下代码作为起点:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
matrix = np.array([
[84., 80.76923077, 68.05555556, 56.57894737, 60.,
44.7761194, 55.2238806, 39.0625, 27.41935484, 29.8245614],
[82.44274809, 67.70833333, 63.75, 44.44444444, 47.76119403,
33.33333333, 22.78481013, 19.23076923, 9.21052632, 2.63157895],
[53.33333333, 61.76470588, 48.64864865, 34.61538462, 0.,
16.66666667, 0., 0., 0., 0.],
[48., 25., 0., 0., 0., 0., 0., 0., 0., 0. ]])
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
xpos = [range(matrix.shape[0])]
ypos = [range(matrix.shape[1])]
xpos, ypos = np.meshgrid(xpos, ypos)
xpos = xpos.flatten('F')
ypos = ypos.flatten('F')
zpos = np.zeros_like(xpos)
dx = 0.5 * np.ones_like(zpos)
dy = dx.copy()
dz = matrix.flatten()
ax.bar3d(xpos, ypos, zpos, dx, dy, dz, color='b', zsort='average')
plt.show()
结果是:
该代码是matplotlib.org对this example的修改。