我用yolov3来检测416x416
大小的帧中的对象。我使用边界框信息在该1920x1080
图像上绘制了框。
但是由于图片太小,我无法正确看到它,因此我使用了暗淡def letterbox_resize(img, size=(resized_image_size,resized_image_size), padColor=0):
h, w = img.shape[:2]
sh, sw = size
# interpolation method
if h > sh or w > sw: # shrinking image
interp = cv2.INTER_AREA
else: # stretching image
interp = cv2.INTER_CUBIC
# aspect ratio of image
aspect = w/h # if on Python 2, you might need to cast as a float: float(w)/h
# compute scaling and pad sizing
if aspect > 1: # horizontal image
new_w = sw
new_h = np.round(new_w/aspect).astype(int)
pad_vert = (sh-new_h)/2
pad_top, pad_bot = np.floor(pad_vert).astype(int), np.ceil(pad_vert).astype(int)
pad_left, pad_right = 0, 0
elif aspect < 1: # vertical image
new_h = sh
new_w = np.round(new_h*aspect).astype(int)
pad_horz = (sw-new_w)/2
pad_left, pad_right = np.floor(pad_horz).astype(int), np.ceil(pad_horz).astype(int)
pad_top, pad_bot = 0, 0
else: # square image
new_h, new_w = sh, sw
pad_left, pad_right, pad_top, pad_bot = 0, 0, 0, 0
# set pad color
if len(img.shape) is 3 and not isinstance(padColor, (list, tuple, np.ndarray)): # color image but only one color provided
padColor = [padColor]*3
# scale and pad
scaled_img = cv2.resize(img, (new_w, new_h), interpolation=interp)
scaled_img = cv2.copyMakeBorder(scaled_img, pad_top, pad_bot, pad_left, pad_right, borderType=cv2.BORDER_CONSTANT, value=padColor)
return scaled_img
的同一帧。我想缩放边界框信息和x,y坐标,以使其缩放到高暗淡的图片,但是我无法正确缩放它。
显然,信息已经消失了。
注意!在传递帧之前,我使用此方法将帧的大小从1920,1080调整为416,416
{{1}}
如果有人帮助我编写脚本,该脚本将重新缩放yolo预测的x,y,w,h信息,以便我可以在图像上正确绘制准确的方框。
答案 0 :(得分:1)
您的重新缩放过程未考虑顶部的零填充区域。在乘以缩放比例之前,请先移除顶部的零垫,这样您便可以获得正确的结果。
以下是所有3种情况的示例代码,其中边界框是与YOLO结果相对应的点。
def boundBox_restore(boundingbox, ori_size=(ori_image_width,ori_image_height), resized_size=(resized_image_size,resized_image_size)):
h, w = ori_size
sh, sw = resized_size
scale_ratio = w / sw
ox,oy,ow,oh = boundingbox
# aspect ratio of image
aspect = w/h # if on Python 2, you might need to cast as a float: float(w)/h
# compute scaling and pad sizing
if aspect > 1: # horizontal image
new_w = sw
new_h = np.round(new_w/aspect).astype(int)
pad_vert = (sh-new_h)/2
pad_top, pad_bot = np.floor(pad_vert).astype(int), np.ceil(pad_vert).astype(int)
pad_left, pad_right = 0, 0
elif aspect < 1: # vertical image
new_h = sh
new_w = np.round(new_h*aspect).astype(int)
pad_horz = (sw-new_w)/2
pad_left, pad_right = np.floor(pad_horz).astype(int), np.ceil(pad_horz).astype(int)
pad_top, pad_bot = 0, 0
else: # square image
new_h, new_w = sh, sw
pad_left, pad_right, pad_top, pad_bot = 0, 0, 0, 0
# remove pad
ox = ox - pad_left
oy = oy - pad_top
# rescale
ox = ox * scale_ratio
oy = oy * scale_ratio
ow = ow * scale_ratio
oh = oh * scale_ratio
return (ox,oy,oh,ow)