'DNN'对象在ImageDataGenerator()中没有属性'fit_generator'-keras-python

时间:2018-12-01 13:26:44

标签: python tensorflow machine-learning keras

开发了以下代码,以使用带有tensorflow后端的keras和python识别5个图像类。我曾经使用过imageDataGenerator,但是当我运行它时,它开始训练,过一会儿,出现以下错误。

我该如何解决?

  

培训步骤:127 |总损失:0.01171 |   时间:32.772s |亚当|时代005 |损失:0.01171-累积:0.9971-   重复:1536/1550培训步骤:128 |总损失:0.01055 |时间:   36.283秒|亚当|时代005 |损失:0.01055-acc:0.9974 | val_loss:3.05709-val_acc:0.6500-迭代:1550/1550   -找到属于0类的0张图像。找到属于0类的0个图像。追溯(最近一次通话):

     

文件“”,第1行,在       runfile('D:/ My Projects / FinalProject_Vr_01.2 / CNN_IMGDG_stackoverflow.py',wdir ='D:/ My   项目/FinalProject_Vr_01.2')

     

文件   “ C:\ Users \ Asus \ Anaconda3 \ lib \ site-packages \ spyder_kernels \ customize \ spydercustomize.py”,   运行文件中的第704行       execfile(文件名,命名空间)

     

文件   “ C:\ Users \ Asus \ Anaconda3 \ lib \ site-packages \ spyder_kernels \ customize \ spydercustomize.py”,   execfile中的第108行       exec(compile(f.read(),文件名,'exec'),命名空间)

     

文件“ D:/我的   Projects / FinalProject_Vr_01.2 / CNN_IMGDG_stackoverflow.py“,第191行,   在       model.fit_generator(train_generator,

     

AttributeError:“ DNN”对象没有属性“ fit_generator”

import cv2                
import numpy as np         
import os                
from random import shuffle 
from tqdm import tqdm      
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential

TRAIN_DIR = 'train'
VALID_DIR = 'validate'
TEST_DIR = 'test'
IMG_SIZE = 128
LR = 1e-3
train_samples = 1500
valdate_samples = 250
epochs = 5
batch_size = 10



MODEL_NAME = 'snakes-{}-{}.model'.format(LR, '2conv-basic')

def label_img(img):
    print("\nImage = ",img)
    print("\n",img.split('.')[-2])
    temp_name= img.split('.')[-2]
    print("\n",temp_name[:1])
    temp_name=temp_name[:1]
    word_label = temp_name


    if word_label == 'A': return [0,0,0,0,1]    
    elif word_label == 'B': return [0,0,0,1,0]
    elif word_label == 'C': return [0,0,1,0,0]
    elif word_label == 'D': return [0,1,0,0,0]
    elif word_label == 'E' : return [1,0,0,0,0]   

def create_train_data():
    training_data = []
    for img in tqdm(os.listdir(TRAIN_DIR)):
        label = label_img(img)
        path = os.path.join(TRAIN_DIR,img)
        img = cv2.imread(path,cv2.IMREAD_GRAYSCALE)
        img = cv2.resize(img,(IMG_SIZE,IMG_SIZE))
        training_data.append([np.array(img),np.array(label)])
    shuffle(training_data)
    np.save('train_data.npy', training_data)
    return training_data


def create_validate_data():
    validating_data = []
    for img in tqdm(os.listdir(VALID_DIR)):
        label = label_img(img)
        path = os.path.join(VALID_DIR,img)
        img = cv2.imread(path,cv2.IMREAD_GRAYSCALE)
        img = cv2.resize(img,(IMG_SIZE,IMG_SIZE))
        validating_data.append([np.array(img),np.array(label)])
    shuffle(validating_data)
    np.save('validate_data.npy', validating_data)
    return validating_data


def process_test_data():
    testing_data = []
    for img in tqdm(os.listdir(TEST_DIR)):
        path = os.path.join(TEST_DIR,img)
        img_num = img.split('.')[0]
        img = cv2.imread(path,cv2.IMREAD_GRAYSCALE) 
        img = cv2.resize(img,(IMG_SIZE,IMG_SIZE))
        testing_data.append([np.array(img), img_num])
    shuffle(testing_data)
    np.save('test_data.npy', testing_data)
    return testing_data

train_data = create_train_data()
validate_data = create_validate_data()


import tflearn
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.estimator import regression




import tensorflow as tf
tf.reset_default_graph()


convnet = input_data(shape=[None, IMG_SIZE, IMG_SIZE, 1], name='input')

convnet = conv_2d(convnet, 32, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)

convnet = conv_2d(convnet, 64, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)

convnet = conv_2d(convnet, 128, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)

convnet = conv_2d(convnet, 64, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)

convnet = conv_2d(convnet, 32, 5, activation='relu')
convnet = max_pool_2d(convnet, 5)

convnet = fully_connected(convnet, 1024, activation='relu')
convnet = dropout(convnet, 0.8)

convnet = fully_connected(convnet, 5, activation='softmax')
convnet = regression(convnet, optimizer='adam', learning_rate=LR, loss='categorical_crossentropy', name='targets')

model = tflearn.DNN(convnet, tensorboard_dir='log')



if os.path.exists('{}.meta'.format(MODEL_NAME)):
    model.load(MODEL_NAME)
    print('model loaded!')


train = train_data[:]
validate = validate_data[:]

X = np.array([i[0] for i in train]).reshape(-1,IMG_SIZE,IMG_SIZE,1)
Y = [i[1] for i in train]


validate_x = np.array([i[0] for i in validate]).reshape(-1,IMG_SIZE,IMG_SIZE,1)
validate_y = [i[1] for i in validate]

model.fit({'input': X}, {'targets': Y}, n_epoch=epochs, validation_set=({'input': validate_x}, {'targets': validate_y}), 
    snapshot_step=500, show_metric=True, run_id=MODEL_NAME)


train_datagen = ImageDataGenerator(
    rescale=1. / 255,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True)

validation_datagen = ImageDataGenerator(rescale=1. / 255)


train_generator = train_datagen.flow_from_directory('train',
                                                    target_size=(IMG_SIZE, IMG_SIZE),
                                                    batch_size=batch_size,
                                                    class_mode='categorical')

validation_generator = validation_datagen.flow_from_directory('validate',
                                                        target_size=(IMG_SIZE, IMG_SIZE),
                                                        batch_size=batch_size,
                                                        class_mode='categorical')


model.fit_generator(train_generator,
                    steps_per_epoch=25,
                    epochs=epochs,
                    validation_data=validation_generator,
                    validation_steps=25)


model.save(MODEL_NAME)

3 个答案:

答案 0 :(得分:2)

您的模型对象是tflearn.DNN类的实例,该类根本没有fit_generator方法。此方法仅适用于keras对象。也许您可以在keras中定义您的体系结构,并且可以使用数据生成器。

答案 1 :(得分:1)

定义神经网络时,可以使用Keras进行。 (您在这里所做的就是使用Tensorflow定义网络。它没有fit_generator方法。)

import keras
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
from keras.models import Sequential

这些是可以与Keras一起用于您的应用程序的层。然后使用DNN = Sequential()

初始化DNN

请参阅用Keras编写的simple classifier,您会明白的。

答案 2 :(得分:0)

其他意见

如果你想看一个模型和ACC,输

你需要使用张量板

示例 1:在 Colab 中

load_ext tensorboard
tensorboard --logdir='/tmp/tflearn_logs'