从雅虎财经下载ohlcv for nvidia, 我正在创建一个用于信号购买/不买入的列,当我尝试定义通过avg> volume test的测试时,所有结果全部变为“买入”或不购买。
df=pd.read_csv('NVDA.csv',dtype={'label':str})
df['Price%delta']=((df['Close']/df['Open'])*100)
df['Avg_volume']=df['Volume'].rolling(7).mean()
df['Signal']=0
for index, row in df.iterrows():
if row['Volume'] > row['Avg_volume']:
df['Signal']='Buy'
else:
df['Signal']='Dont Buy'
答案 0 :(得分:1)
您没有指定要分配'Buy'
或'Don't buy'
的索引。请改用loc
:
for index, row in df.iterrows():
if row['Volume'] > row['Avg_volume']:
df.loc[index, 'Signal']='Buy'
else:
df.loc[index, 'Signal']='Dont Buy'
答案 1 :(得分:1)
您根本不需要for循环:
mask = df["Volume"] > df["Avg_volume"]
df.loc[mask, "Signal"] = "Buy"
df.loc[~mask, "Signal"] = 'Don't buy'
答案 2 :(得分:1)
使用np.where()
的矢量化解决方案:
df['Signal'] = np.where(df['Volume'] > df['Avg_volume'], 'Buy', 'Dont Buy')