我有一个4列的pandas数据框。
时间值递增,但间隔不规则。我需要将单独的信号分配到数据帧中的列,并以固定的间隔对每个信号的强度重新采样以进行互相关计算。重新采样的强度只是该信号的最后记录值(以后可以使用插值法)。事件计数是该时间间隔内所有事件的总和。
我将捕获的信号样本按信号ID分组,然后使用分组器将每个信号的样本按时间间隔分组。重新采样数据后,我将强度再次连接到数据框中。dfg = df.groupby('signalid')
signals_list = {g: dfg.get_group(g).groupby(pd.Grouper(key='time', freq='100ms')).agg({'intensity' : 'last', 'eventcount' : np.sum}) for g in dfg.groups}
intensity_list = [v['intensity'].to_frame(k) for k,v in signals_list.items()]
intensity_df = pd.concat(intensity_list).fillna(method='ffill')
event_list = [v['eventcount'].to_frame(k) for k,v in signals_list.items()]
event_df = pd.concat(event_list)
是否有更整洁的方法来执行此操作而不将其转换为系列列表?
这是源数据帧的一部分:
from pandas import Timestamp
d = {'time': {0: Timestamp('2018-10-23 06:09:29.803606'),
1: Timestamp('2018-10-23 06:09:29.803611'),
2: Timestamp('2018-10-23 06:09:29.803607'),
3: Timestamp('2018-10-23 06:09:29.803614'),
4: Timestamp('2018-10-23 06:09:29.803609'),
5: Timestamp('2018-10-23 06:09:29.803617'),
6: Timestamp('2018-10-23 06:09:29.803616'),
7: Timestamp('2018-10-23 06:09:29.803621'),
8: Timestamp('2018-10-23 06:09:29.813251'),
9: Timestamp('2018-10-23 06:09:29.813253'),
10: Timestamp('2018-10-23 06:09:30.376274'),
11: Timestamp('2018-10-23 06:09:30.376275'),
12: Timestamp('2018-10-23 06:09:30.386322'),
13: Timestamp('2018-10-23 06:09:30.386323'),
14: Timestamp('2018-10-23 06:09:30.386325'),
15: Timestamp('2018-10-23 06:09:30.386327'),
16: Timestamp('2018-10-23 06:09:30.407347'),
17: Timestamp('2018-10-23 06:09:30.407346'),
18: Timestamp('2018-10-23 06:09:30.492530'),
19: Timestamp('2018-10-23 06:09:30.492532')},
'signalid': {0: 1299,
1: 1299,
2: 1299,
3: 1299,
4: 1299,
5: 1299,
6: 1299,
7: 1299,
8: 27,
9: 27,
10: 1299,
11: 1299,
12: 1177,
13: 1177,
14: 1177,
15: 1177,
16: 5,
17: 5,
18: 2628,
19: 2628},
'intensity': {0: 63050,
1: 63050,
2: 63050,
3: 63050,
4: 63050,
5: 63050,
6: 63050,
7: 63050,
8: 44600,
9: 44600,
10: 63050,
11: 63050,
12: 7130,
13: 7130,
14: 7130,
15: 7130,
16: 63150,
17: 63150,
18: 17680,
19: 17680},
'eventcount': {0: 1000,
1: 1000,
2: 400,
3: 400,
4: 200,
5: 200,
6: 600,
7: 600,
8: 1000,
9: 1000,
10: 600,
11: 600,
12: 1000,
13: 1000,
14: 5000,
15: 5000,
16: 400,
17: 400,
18: 1000,
19: 1000}}
df = pd.DataFrame.from_dict(d)