我有两个矩阵R和F
abstract class AbstractBase {
private readonly ["AbstractBase"];
}
class A extends AbstractBase {}
class B extends AbstractBase {}
class C extends AbstractBase {}
function create<T extends typeof AbstractBase>(c: T) {return new c();}
如果我尝试解决广义特征值问题,我会得到
R = array([[ 0.89148867, 4.58007519, 15.70287019],
[ 5.1065172 , 14.26381865, 34.50113854],
[18.51056089, 36.78238723, 72.21058193]])
F = array([[ 4.9348022, 12.3370055, 24.674011 ],
[12.3370055, 19.7392088, 32.0762143],
[24.674011 , 32.0762143, 44.4132198]])
但是如果我首先把它变成一个标准的特征值问题,我会得到
#[R]{c}=e[F]{c}
eigvals,eigvecs = scipy.linalg.eig(R,b=F)
eigvals =
array([[inf+0.j],
[1.0583253e+14+0.j],
[ inf+0.j]])
为什么会这样?他们应该提供不同的解决方案吗?