我已经将这样的图像二值化了:
我需要确定内部固态磁盘的中心和半径。如您所见,它被触摸的纹理区域包围,因此无法简单地检测连接的组件。无论如何,周边的大部分区域都有空白。
可能的解决方法是腐蚀直到所有纹理消失或从磁盘断开,但这可能很耗时,并且不确定迭代次数。 (此外,在某些不幸的情况下,磁盘上会出现细小的孔,随着腐蚀的加剧,孔会逐渐增大。)
有更好的建议以健壮和快速的方式解决此问题吗? (我标记了OpenCV,但这不是强制性的,重要的是方法。)
答案 0 :(得分:6)
您可以:
代码:
#include <opencv2\opencv.hpp>
using namespace std;
using namespace cv;
// https://stackoverflow.com/a/30418912/5008845
cv::Rect findMaxRect(const cv::Mat1b& src)
{
cv::Mat1f W(src.rows, src.cols, float(0));
cv::Mat1f H(src.rows, src.cols, float(0));
cv::Rect maxRect(0,0,0,0);
float maxArea = 0.f;
for (int r = 0; r < src.rows; ++r)
{
for (int c = 0; c < src.cols; ++c)
{
if (src(r, c) == 0)
{
H(r, c) = 1.f + ((r>0) ? H(r-1, c) : 0);
W(r, c) = 1.f + ((c>0) ? W(r, c-1) : 0);
}
float minw = W(r,c);
for (int h = 0; h < H(r, c); ++h)
{
minw = std::min(minw, W(r-h, c));
float area = (h+1) * minw;
if (area > maxArea)
{
maxArea = area;
maxRect = cv::Rect(cv::Point(c - minw + 1, r - h), cv::Point(c+1, r+1));
}
}
}
}
return maxRect;
}
int main()
{
cv::Mat1b img = cv::imread("path/to/img", cv::IMREAD_GRAYSCALE);
// Correct image
img = img > 127;
cv::Rect r = findMaxRect(~img);
cv::Point center ( std::round(r.x + r.width / 2.f), std::round(r.y + r.height / 2.f));
int radius = std::sqrt(r.width*r.width + r.height*r.height) / 2;
cv::Mat3b out;
cv::cvtColor(img, out, cv::COLOR_GRAY2BGR);
cv::rectangle(out, r, cv::Scalar(0, 255, 0));
cv::circle(out, center, radius, cv::Scalar(0, 0, 255));
return 0;
}
答案 1 :(得分:2)
我的方法是使用morph-open,findcontours和minEnclosingCircle,如下所示:
#!/usr/bin/python3
# 2018/11/29 20:03
import cv2
fname = "test.png"
img = cv2.imread(fname)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
th, threshed = cv2.threshold(gray, 200, 255, cv2.THRESH_BINARY)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3,3))
morphed = cv2.morphologyEx(threshed, cv2.MORPH_OPEN, kernel, iterations = 3)
cnts = cv2.findContours(morphed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]
cnt = max(cnts, key=cv2.contourArea)
pt, r = cv2.minEnclosingCircle(cnt)
pt = (int(pt[0]), int(pt[1]))
r = int(r)
print("center: {}\nradius: {}".format(pt, r))
最终结果:
center: (184, 170)
radius: 103
答案 2 :(得分:1)
这里是使用霍夫圆的一个例子。如果将最小半径和最大半径设置在适当的范围内,则可以正常工作。
import cv2
import numpy as np
# load image in grayscale
image = cv2.imread('radius.png',0)
r , c = image.shape
# remove noise
dst = cv2.blur(image,(5,5))
# Morphological closing
dst = cv2.erode(dst,None,iterations = 3)
dst = cv2.dilate(dst,None,iterations = 3)
# Find Hough Circle
circles = cv2.HoughCircles(dst
,cv2.HOUGH_GRADIENT
,2
,minDist = 0.5* r
,param2 = 150
,minRadius = int(0.5 * r / 2.0)
,maxRadius = int(0.75 * r / 2.0)
)
# Display
edges_color = cv2.cvtColor(image,cv2.COLOR_GRAY2BGR)
for i in circles[0]:
print(i)
cv2.circle(edges_color,(i[0],i[1]),i[2],(0,0,255),1)
cv2.imshow("edges_color",edges_color)
cv2.waitKey(0)
这是结果 [185。 167. 103.6]
答案 3 :(得分:1)
我第二次尝试这种情况。这次我使用形态学闭合操作来减弱噪声并保持信号。接下来是简单的阈值和关联组件分析。我希望这段代码可以运行得更快。
使用这种方法,我可以找到具有亚像素精度的质心
('center : ', (184.12244328746746, 170.59771290442544))
半径是从圆的面积得出的。
('radius : ', 101.34704439389715)
这是完整的代码
import cv2
import numpy as np
# load image in grayscale
image = cv2.imread('radius.png',0)
r,c = image.shape
# remove noise
blured = cv2.blur(image,(5,5))
# Morphological closing
morph = cv2.erode(blured,None,iterations = 3)
morph = cv2.dilate(morph,None,iterations = 3)
cv2.imshow("morph",morph)
cv2.waitKey(0)
# Get the strong signal
th, th_img = cv2.threshold(morph,200,255,cv2.THRESH_BINARY)
cv2.imshow("th_img",th_img)
cv2.waitKey(0)
# Get connected components
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(th_img)
print(num_labels)
print(stats)
# displat labels
labels_disp = np.uint8(255*labels/np.max(labels))
cv2.imshow("labels",labels_disp)
cv2.waitKey(0)
# Find center label
cnt_label = labels[r/2,c/2]
# Find circle center and radius
# Radius calculated by averaging the height and width of bounding box
area = stats[cnt_label][4]
radius = np.sqrt(area / np.pi)#stats[cnt_label][2]/2 + stats[cnt_label][3]/2)/2
cnt_pt = ((centroids[cnt_label][0]),(centroids[cnt_label][1]))
print('center : ',cnt_pt)
print('radius : ',radius)
# Display final result
edges_color = cv2.cvtColor(image,cv2.COLOR_GRAY2BGR)
cv2.circle(edges_color,(int(cnt_pt[0]),int(cnt_pt[1])),int(radius),(0,0,255),1)
cv2.circle(edges_color,(int(cnt_pt[0]),int(cnt_pt[1])),5,(0,0,255),-1)
x1 = stats[cnt_label][0]
y1 = stats[cnt_label][1]
w1 = stats[cnt_label][2]
h1 = stats[cnt_label][3]
cv2.rectangle(edges_color,(x1,y1),(x1+w1,y1+h1),(0,255,0))
cv2.imshow("edges_color",edges_color)
cv2.waitKey(0)
答案 4 :(得分:0)
您是否尝试过类似Circle Hough Transform的方法? 我看到OpenCv有its own implementation。不过,这里可能需要进行一些预处理(中值过滤?)。
答案 5 :(得分:0)
这是一种简单的方法:
输出看起来像这样:
从这里开始,确定半径非常简单。
这是代码,我正在使用PyDIP(我们还没有二进制发行版,您需要下载和构建表单源):
import matplotlib.pyplot as pp
import PyDIP as dip
import numpy as np
img = dip.Image(pp.imread('/home/cris/tmp/FDvQm.png')[:,:,0])
b = dip.Erosion(img, 30)
c = dip.CenterOfMass(b)
rmean = dip.RadialMean(img, center=c)
pp.plot(rmean)
r = np.argmax(rmean < 0.5)
在这里,r
为102,因为以整数像素为单位的半径,我敢肯定可以进行插值以提高精度。 c
是[184.02, 170.45]
。