我正在对一些虚拟数据使用Poisson GLM,以基于频率和司法方向这两个变量来预测ClaimCounts。
虚拟数据框:
data5 <-data.frame(Year=c("2006","2006","2006","2007","2007","2007","2008","2009","2010","2010","2009","2009"),
JudicialOrientation=c("Defense","Plaintiff","Plaintiff","Neutral","Defense","Plaintiff","Defense","Plaintiff","Neutral","Neutral","Plaintiff","Defense"),
Frequency=c(0.0,0.06,.07,.04,.03,.02,0,.1,.09,.08,.11,0),
ClaimCount=c(0,5,10,3,4,0,7,8,15,16,17,12),
Loss = c(100000,100,2500,100000,25000,0,7500,5200, 900,100,0,50),
Exposure=c(10,20,30,1,2,4,3,2,1,54,12,13)
)
模型GLM:
ClaimModel <- glm(ClaimCount~JudicialOrientation+Frequency
,family = poisson(link="log"), offset=log(Exposure), data = data5, na.action=na.pass)
Call:
glm(formula = ClaimCount ~ JudicialOrientation + Frequency, family = poisson(link = "log"),
data = data5, na.action = na.pass, offset = log(Exposure))
Deviance Residuals:
Min 1Q Median 3Q Max
-3.7555 -0.7277 -0.1196 2.6895 7.4768
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.3493 0.2125 -1.644 0.1
JudicialOrientationNeutral -3.3343 0.5664 -5.887 3.94e-09 ***
JudicialOrientationPlaintiff -3.4512 0.6337 -5.446 5.15e-08 ***
Frequency 39.8765 6.7255 5.929 3.04e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 149.72 on 11 degrees of freedom
Residual deviance: 111.59 on 8 degrees of freedom
AIC: 159.43
Number of Fisher Scoring iterations: 6
我也在使用“曝光”偏移。
然后我想使用此GLM来预测相同观察结果的索赔数:
data5$ExpClaimCount <- predict(ClaimModel, newdata=data5, type="response")
如果我理解正确,则泊松glm方程应为:
ClaimCount = exp(-。3493 + -3.3343 * JudicialOrientationNeutral + -3.4512 * JudicialOrientationPlaintiff + 39.8765 *频率+ log(Exposure))
但是我手动尝试(In excel =EXP(-0.3493+0+0+LOG(10)) for observation 1 for example)
并进行了一些观察,但未获得正确答案。
我对GLM方程的理解不正确吗?
答案 0 :(得分:2)
关于Poisson GLM predict()
的工作原理的假设是正确的。可以在R中验证:
co <- coef(ClaimModel)
p1 <- with(data5,
exp(log(Exposure) + # offset
co[1] + # intercept
ifelse(as.numeric(JudicialOrientation)>1, # factor term
co[as.numeric(JudicialOrientation)], 0) +
Frequency * co[4])) # linear term
all.equal(p1, predict(ClaimModel, type="response"), check.names=FALSE)
[1] TRUE
如注释中所述,由于对数的底数不同(Excel中为10,R中为欧拉数),您在Excel中可能会得到错误的结果。