我在当前项目中满足了一项要求,这导致我有必要以最小的时间成本为unicode符号序列提供一种缓冲方法。 这种缓冲区的基本操作是:
因此,我测试了几种方法来找到具有最小时序开销的方法,但是我仍然不确定是否能获得最快的方法。我尝试了以下算法(从最有效的算法中列出):
list
个符号io.StringIO
对象array.array
有人可以给我提示解决此挑战的更好方法吗? 项目解释器是CPython 2.7。我的测试的MCVE是:
# -*- coding: utf-8 -*-
import timeit
import io
import array
import abc
class BaseBuffer:
"""A base abstract class for all buffers below"""
__metaclass__ = abc.ABCMeta
def __init__(self):
pass
def clear(self):
old_val = self.value()
self.__init__()
return old_val
@abc.abstractmethod
def value(self):
return self
@abc.abstractmethod
def write(self, symbol):
pass
class ListBuffer(BaseBuffer):
"""Use lists as a storage"""
def __init__(self):
BaseBuffer.__init__(self)
self.__io = []
def value(self):
return u"".join(self.__io)
def write(self, symbol):
self.__io.append(symbol)
class StringBuffer(BaseBuffer):
"""Simply append to the stored string. Obviously unefficient due to strings immutability"""
def __init__(self):
BaseBuffer.__init__(self)
self.__io = u""
def value(self):
return self.__io
def write(self, symbol):
self.__io += symbol
class StringIoBuffer(BaseBuffer):
"""Use the io.StringIO object"""
def __init__(self):
BaseBuffer.__init__(self)
self.__io = io.StringIO()
def value(self):
return self.__io.getvalue()
def write(self, symbol):
self.__io.write(symbol)
class ArrayBuffer(BaseBuffer):
"""Preallocate an array"""
def __init__(self):
BaseBuffer.__init__(self)
self.__io = array.array("u", (u"\u0000" for _ in xrange(1000000)))
self.__caret = 0
def clear(self):
val = self.value()
self.__caret = 0
return val
def value(self):
return u"".join(self.__io[n] for n in xrange(self.__caret))
def write(self, symbol):
self.__io[self.__caret] = symbol
self.__caret += 1
def time_test():
# Test distinct buffer data length
for i in xrange(1000):
for j in xrange(i):
buffer_object.write(unicode(i % 10))
buffer_object.clear()
if __name__ == '__main__':
number_of_runs = 10
for buffer_object in (ListBuffer(), StringIoBuffer(), StringBuffer(), ArrayBuffer()):
print("Class {klass}: {elapsed:.2f}s per {number_of_runs} runs".format(
klass=buffer_object.__class__.__name__,
elapsed=timeit.timeit(stmt=time_test, number=number_of_runs),
number_of_runs=number_of_runs,
))
...并且我得到的运行结果是:
Class ListBuffer: 1.88s per 10 runs
Class StringIoBuffer: 2.04s per 10 runs
Class StringBuffer: 2.40s per 10 runs
Class ArrayBuffer: 3.10s per 10 runs
答案 0 :(得分:1)
我尝试了几种替代方法(请参见下文),但是我无法胜过ListBuffer
实现。我尝试过的事情:
class ArrayBufferNoPreallocate(BaseBuffer):
"""array buffer"""
def __init__(self):
BaseBuffer.__init__(self)
self.__io = array.array("u")
def value(self):
return self.__io.tounicode()
def write(self, symbol):
self.__io.append(symbol)
class NumpyBuffer(BaseBuffer):
"""numpy array with pre-allocation"""
def __init__(self):
BaseBuffer.__init__(self)
self.__io = np.zeros((1000000,), dtype=np.unicode_)
self.__cursor = 0
def clear(self):
val = self.value()
self.__cursor = 0
return val
def value(self):
return np.char.join(u"", (self.__io[i] for i in xrange(self.__cursor)))
def write(self, symbol):
self.__io[self.__cursor] = symbol
self.__cursor += 1
Class ListBuffer: 3.40s per 10 runs
Class StringIoBuffer: 4.44s per 10 runs
Class StringBuffer: 4.58s per 10 runs
Class ArrayBuffer: 4.65s per 10 runs
Class ArrayBufferNoPreallocate: 3.94s per 10 runs
Class NumpyBuffer: 5.73s per 10 runs
如果您确实希望大幅提高速度,则可能必须编写 c扩展名或使用类似 cython 的东西。
如果您可以优化问题,从而不需要为每个字符调用函数,那么您也可以获得一些性能。