在字符串列-复合字符串列上合并两个数据帧

时间:2018-11-22 23:13:47

标签: python pandas dataframe merge

我正在尝试合并两个具有以下结构的巨大数据框(每个 4+百万):

数据框A:

     date    Fruit        a    b    c    d
     01      "apple"      0    3    5    1
     03      "apple"      8    2    7    2
     02      "banana"     1    4    3    5
     04      "banana"     3    5    2    6
     03      "pineapple"  2    6    4    6
     05      "pineapple"  3    5    7    9

数据框B:

     date   Fruits                         x    y    z 
     01     "apple, pear, strawberry"      a    n    q 
     02     "banana, apple, coconut"       b    m    p 
     03     "pineapple, pear, banana"      c    s    o
     04     "banana, apple, coconut"       d    f    v 
     05     "pineapple, pear, banana"      r    ñ    t  

我要实现的是具有以下结构的第三个数据框:

数据框C:

     date   Fruit        a    b    c    d    x    y    z
     01     "apple"      0    3    5    1    a    n    q
     03     "apple"      0    3    5    1    0    0    0
     02     "banana"     1    4    3    5    b    m    p
     04     "banana"     1    4    3    5    d    f    v
     03     "pineapple"  2    6    4    6    c    s    o
     05     "pineapple"  2    6    4    6    r    ñ    t
      ...

我已经尝试过类似的方法:

test = market_test.assetCode.apply(lambda x : news_test.assetCodes.str.find(x)>=0)

但是我的内核坏了,我还尝试了使用for循环将 B 数据帧的fruit列扩展为'fruit-b'列,并保留了其他 B的数据列,然后在date列和' fruit-B '列之间合并,但是执行时间太长。

是否可以使用不消耗大量时间和内存的数据帧 A B 获取数据帧 C

水果水果列的类型为字符串。

1 个答案:

答案 0 :(得分:0)

使用:

print (df_A)

   date      Fruit  a  b  c  d
0     1      apple  0  3  5  1
1     3      apple  8  2  7  2
2     2     banana  1  4  3  5
3     4     banana  3  5  2  6
4     3  pineapple  2  6  4  6
5     5  pineapple  3  5  7  9

print (df_B)

   date                   Fruits  x  y  z
0     1  apple, pear, strawberry  a  n  q
1     2   banana, apple, coconut  b  m  p
2     3  pineapple, pear, banana  c  s  o
3     4   banana, apple, coconut  d  f  v
4     5  pineapple, pear, banana  r  ñ  t

import pandas as pd
import numpy as np

# Split the strings into list.
df_B.Fruits = df_B.Fruits.str.split(', ')

# reindex and repeat on length of list
temp = df_B.reindex(df_B.index.repeat(df_B.Fruits.str.len())).drop('Fruits',1)

temp['Fruit'] = np.concatenate(df_B.Fruits.values)

df_C = df_A.merge(temp, on=['date','Fruit'], how='left').fillna(0)

print (df_C)

   date      Fruit  a  b  c  d  x  y  z
0     1      apple  0  3  5  1  a  n  q
1     3      apple  8  2  7  2  0  0  0
2     2     banana  1  4  3  5  b  m  p
3     4     banana  3  5  2  6  d  f  v
4     3  pineapple  2  6  4  6  c  s  o
5     5  pineapple  3  5  7  9  r  ñ  t