更新:我已修复该错误,因此我只需要回答第二个问题即可!
我是Python的新手,执行任务时出错。我寻找了此错误,但没有找到答案。
所以,这就是我想要做的。
我想构建一个能够预测值的神经网络。 我在课堂上使用的代码如下
# neural network class definition
类NeuroNetwork:
#Step 1: initialise the neural network: number of input layers, hidden layers and output layers
def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):
#set number of nodes in each input, hidden, output layer
self.inodes = inputnodes
self.hnodes = hiddennodes
self.onodes = outputnodes
#link weight matrices, wih and who (weights in hidden en output layers), we are going to create matrices for the multiplication of it to get an output
#weights inside the arrays (matrices) are w_i_j, where link is from node i to node j in the next layer
#w11 w21
#w12 w22 etc
self.wih = numpy.random.normal(0.0,pow(self.inodes,-0.5),( self.hnodes, self.inodes))
self.who = numpy.random.normal(0.0,pow(self.hnodes,-0.5),( self.onodes, self.hnodes))
# setting the learning rate
self.lr = learningrate
# activation function is the sigmoid function
self.activation_function = lambda x: scipy.special.expit(x)
pass
#Step 2: training the neural network - adjust the weights based on the error of the network
def train(self, inputs_list, targets_list):
#convert input lists to 2d array (matrice)
inputs = numpy.array(inputs_list, ndmin=2).T
targets = numpy.array(targets_list, ndmin=2).T
#calculate signals into hidden layer
hidden_inputs = numpy.dot(self.wih, inputs)
#calculate signals emerging from hidden layer
hidden_outputs = self.activation_function(hidden_inputs)
#calculate signals into final output layer
final_inputs = numpy.dot(self.who, hidden_outputs)
#calculate signals emerging from final output layer
final_outputs = self.activation_function(final_inputs)
# output layer error is the (target-actual)
output_errors = targets -final_outputs
#hidden layer error is the output_errors, split by weights, recombined at hidden nodes
hidden_errors = numpy.dot(self.who.T, output_errors)
#update the weights for the links between the hidden and output layers
self.who += self.lr * numpy.dot((output_errors*final_outputs * (1.0-final_outputs)),numpy.transpose(hidden_outputs))
# update the weights for the links between the input and hidden layers
self.wih += self.lr*numpy.dot((hidden_errors*hidden_outputs*(1.0-hidden_outputs)),numpy.transpose(inputs))
pass
#Seap 3: giving an output- thus making the neural network perform a guess
def query(self, inputs_list):
#convert input lists to 2d array (matrice)
inputs = numpy.array(inputs_list, ndmin=2).T
#calculate signals into hidden layer
hidden_inputs = numpy.dot(self.wih, inputs)
#calculate signals emerging from hidden layer
hidden_outputs = self.activation_function(hidden_inputs)
#calculate signals into final output layer
final_inputs = numpy.dot(self.who, hidden_outputs)
#calculate signals emerging from final output layer
final_outputs = self.activation_function(final_inputs)
return final_outputs
我显然首先导入了必要的东西:
import numpy
#scipy.special for the sigmoid function expit()
import scipy.special
然后我创建了神经网络的一个实例:
#number of input, hidden and output nodes
input_nodes = 784
hidden_nodes = 100
output_nodes = 10
#learning rate is 0.8
learning_rate = 0.8
#create instance of neural network
n = neuralNetwork(input_nodes, hidden_nodes, output_nodes, learning_rate)
此后,我将读取带有输入和目标的excel文件
import pandas as pd
df = pd.read_excel("Desktop\\PythonTest.xlsx")
文件如下:
h,P,D,o列是输入,EOQ列是神经网络应该学习的数字。
所以,我首先这样做:
xcol=["h","P","D","o"]
ycol=["EOQ"]
x=df[xcol].values
y=df[ycol].values
定义x和y列。 x是输入,y是目标。
我现在想在此数据上训练神经网络,并使用了这些代码行;
# train the neural network
# go through all records in the training data set
for record in df:
inputs = x
targets = y
n.train(inputs, targets)
pass
这给了我以下错误:
---------------------------------------------------------------------------
ValueError Traceback (most recent call
last)
<ipython-input-23-48e0e741e8ec> in <module>()
4 inputs = x
5 targets = y
----> 6 n.train(inputs, targets)
7 pass
<ipython-input-13-12c121f6896b> in train(self, inputs_list, targets_list)
31
32 #calculate signals into hidden layer
---> 33 hidden_inputs = numpy.dot(self.wih, inputs)
34 #calculate signals emerging from hidden layer
35 hidden_outputs = self.activation_function(hidden_inputs)
ValueError: shapes (100,784) and (4,6836) not aligned: 784 (dim 1) != 4
(dim 0)
有两个问题:
在此先感谢您,并感谢您的反馈!
欢呼
史蒂芬
答案 0 :(得分:0)
您已经在使用熊猫,因此您只需获取所有输出,并为熊猫df
新建一列。
result = [nn.query(input) for input in df]
df['result'] = result