(编辑:进行细微的编辑以更好地反映意图,但是由于取得了进展,因此进行了较大的编辑。)
为主题"t_raw"
提供了多种类型的消息,它们都包含一个公用的"type"
密钥:
{"type":"key1","data":{"ts":"2018-11-20 19:20:21.1","a":1,"b":"hello"}}
{"type":"key2","data":{"ts":"2018-11-20 19:20:22.2","a":1,"c":11,"d":"goodbye"}}
{"type":"key1","data":{"ts":"2018-11-20 19:20:23.3","a":2,"b":"hello2"}}
{"type":"key2","data":{"ts":"2018-11-20 19:20:24.4","a":3,"c":22,"d":"goodbye2"}}
最终,我需要将其拆分为其他流,在其中将对其进行切碎/汇总/处理。我希望能够对所有内容使用STRUCT
,但是我目前的工作是让我这样做:
create stream raw (type varchar, data varchar) \
with (kafka_topic='t_raw', value_format='JSON');
第一个级别,然后
create stream key1 with (TIMESTAMP='ts', timestamp_format='yyyy-MM-dd HH:mm:ss.S') as \
select \
extractjsonfield(data, '$.ts') as ts, \
extractjsonfield(data, '$.a') as a, extractjsonfield(data, '$.b') as b \
from raw where type='key1';
create stream key2 with (TIMESTAMP='ts', timestamp_format='yyyy-MM-dd HH:mm:ss.S') as \
select \
extractjsonfield(data, '$.ts') as ts, \
extractjsonfield(data, '$.a') as a, extractjsonfield(data, '$.c') as c, \
extractjsonfield(data, '$.d') as d \
from raw where type='key2';
这似乎可行,但是最近添加了STRUCT
,有没有办法像上面一样使用它来代替extractjsonfield
?
ksql> select * from key1;
1542741621100 | null | 2018-11-20 19:20:21.1 | 1 | hello
1542741623300 | null | 2018-11-20 19:20:23.3 | 2 | hello2
^CQuery terminated
ksql> select * from key2;
1542741622200 | null | 2018-11-20 19:20:22.2 | 1 | 11 | goodbye
1542741624400 | null | 2018-11-20 19:20:24.4 | 3 | 22 | goodbye2
如果不使用STRUCT
,是否可以通过简单的方法来使用香草kafka流(副ksql
,ergo apache-kafka-streams标签)?
是否有更kafka式/高效/优雅的方式来解析?
我不能将其定义为空的STRUCT<>
ksql> CREATE STREAM some_input ( type VARCHAR, data struct<> ) \
WITH (KAFKA_TOPIC='t1', VALUE_FORMAT='JSON');
line 1:52: extraneous input '<>' expecting {',', ')'}
some (not-so-recent) discussion可以做类似的事情
CREATE STREAM key1 ( a INT, b VARCHAR ) AS \
SELECT data->* from some_input where type = 'key1';
仅供参考:以上解决方案在confluent-5.0.0中无法使用,a recent patch修复了extractjsonfield
错误并启用了此解决方案。
实际数据还具有其他几种相似的消息类型。它们都包含"type"
和"data"
键(顶层没有其他键),几乎所有键都嵌套在"ts"
中的"data"
时间戳。
答案 0 :(得分:2)
是的,您可以执行此操作-KSQL并不介意是否不存在任何列,您只得到一个null
值。
在主题中填充一些测试数据:
kafkacat -b kafka:29092 -t t_raw -P <<EOF
{"type":"key1","data":{"ts":"2018-11-20 19:20:21.1","a":1,"b":"hello"}}
{"type":"key2","data":{"ts":"2018-11-20 19:20:22.2","a":1,"c":11,"d":"goodbye"}}
{"type":"key1","data":{"ts":"2018-11-20 19:20:23.3","a":2,"b":"hello2"}}
{"type":"key2","data":{"ts":"2018-11-20 19:20:24.4","a":3,"c":22,"d":"goodbye2"}}
EOF
将主题转储到KSQL控制台进行检查:
ksql> PRINT 't_raw' FROM BEGINNING;
Format:JSON
{"ROWTIME":1542965737436,"ROWKEY":"null","type":"key1","data":{"ts":"2018-11-20 19:20:21.1","a":1,"b":"hello"}}
{"ROWTIME":1542965737436,"ROWKEY":"null","type":"key2","data":{"ts":"2018-11-20 19:20:22.2","a":1,"c":11,"d":"goodbye"}}
{"ROWTIME":1542965737436,"ROWKEY":"null","type":"key1","data":{"ts":"2018-11-20 19:20:23.3","a":2,"b":"hello2"}}
{"ROWTIME":1542965737437,"ROWKEY":"null","type":"key2","data":{"ts":"2018-11-20 19:20:24.4","a":3,"c":22,"d":"goodbye2"}}
^CTopic printing ceased
ksql>
在其上创建流。请注意STRUCT
的使用以及每个可能的列的引用:
CREATE STREAM T (TYPE VARCHAR, \
DATA STRUCT< \
TS VARCHAR, \
A INT, \
B VARCHAR, \
C INT, \
D VARCHAR>) \
WITH (KAFKA_TOPIC='t_raw',\
VALUE_FORMAT='JSON');
将offset设置为最早,以便我们查询整个主题,然后使用KSQL访问完整的流:
ksql> SET 'auto.offset.reset' = 'earliest';
Successfully changed local property 'auto.offset.reset' from 'null' to 'earliest'
ksql>
ksql> SELECT * FROM T;
1542965737436 | null | key1 | {TS=2018-11-20 19:20:21.1, A=1, B=hello, C=null, D=null}
1542965737436 | null | key2 | {TS=2018-11-20 19:20:22.2, A=1, B=null, C=11, D=goodbye}
1542965737436 | null | key1 | {TS=2018-11-20 19:20:23.3, A=2, B=hello2, C=null, D=null}
1542965737437 | null | key2 | {TS=2018-11-20 19:20:24.4, A=3, B=null, C=22, D=goodbye2}
^CQuery terminated
使用->
运算符访问嵌套的元素,分别查询类型:
ksql> SELECT DATA->A,DATA->B FROM T WHERE TYPE='key1' LIMIT 2;
1 | hello
2 | hello2
ksql> SELECT DATA->A,DATA->C,DATA->D FROM T WHERE TYPE='key2' LIMIT 2;
1 | 11 | goodbye
3 | 22 | goodbye2
用分离的数据填充目标主题:
ksql> CREATE STREAM TYPE_1 AS SELECT DATA->TS, DATA->A, DATA->B FROM T WHERE TYPE='key1';
Message
----------------------------
Stream created and running
----------------------------
ksql> CREATE STREAM TYPE_2 AS SELECT DATA->TS, DATA->A, DATA->C, DATA->D FROM T WHERE TYPE='key2';
Message
----------------------------
Stream created and running
----------------------------
新流的模式:
ksql> DESCRIBE TYPE_1;
Name : TYPE_1
Field | Type
--------------------------------------
ROWTIME | BIGINT (system)
ROWKEY | VARCHAR(STRING) (system)
DATA__TS | VARCHAR(STRING)
DATA__A | INTEGER
DATA__B | VARCHAR(STRING)
--------------------------------------
For runtime statistics and query details run: DESCRIBE EXTENDED <Stream,Table>;
ksql> DESCRIBE TYPE_2;
Name : TYPE_2
Field | Type
--------------------------------------
ROWTIME | BIGINT (system)
ROWKEY | VARCHAR(STRING) (system)
DATA__TS | VARCHAR(STRING)
DATA__A | INTEGER
DATA__C | INTEGER
DATA__D | VARCHAR(STRING)
--------------------------------------
主题是每个KSQL流的基础:
ksql> LIST TOPICS;
Kafka Topic | Registered | Partitions | Partition Replicas | Consumers | ConsumerGroups
---------------------------------------------------------------------------------------------------------
t_raw | true | 1 | 1 | 2 | 2
TYPE_1 | true | 4 | 1 | 0 | 0
TYPE_2 | true | 4 | 1 | 0 | 0
---------------------------------------------------------------------------------------------------------