我正在训练一个非常简单的模型,该模型将隐藏层的数量作为参数。我最初将这些隐藏层存储在香草python列表[]
中,但是,当将此列表转换为nn.ModuleList
时,训练会显着降低至少一个数量级! / p>
AdderNet
class AdderNet(nn.Module):
def __init__(self, num_hidden, hidden_width):
super(AdderNet, self).__init__()
self.relu = nn.ReLU()
self.hiddenLayers = []
self.inputLayer = nn.Linear(2, hidden_width)
self.outputLayer = nn.Linear(hidden_width, 1)
for i in range(num_hidden):
self.hiddenLayers.append(nn.Linear(hidden_width, hidden_width))
self.hiddenLayers = nn.ModuleList(self.hiddenLayers) # <--- causes DRAMATIC slowdown!
def forward(self, x):
out = self.inputLayer(x)
out = self.relu(out)
for layer in self.hiddenLayers:
out = layer(out)
out = self.relu(out)
return self.outputLayer(out)
培训
for epoch in range(num_epochs):
for i in range(0,len(data)):
out = model.forward(data[i].x)
loss = lossFunction(out, data[i].y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
答案 0 :(得分:1)
那是因为当使用普通的python列表时,参数不会添加到模型的参数列表中,而在使用ModuleList时会添加。因此,在原始方案中,您从未真正训练过隐藏层,这就是为什么它更快的原因。 (在每种情况下打印出model.parameters(),看看会发生什么!)