从数据框中,我尝试从1:20观察值中随机取样,
我想将每个观察次数重复4次。一世
想出了这个可行的解决方案,但是它很慢,因为
由于crossing()
涉及多次处理大型数据帧
功能。任何人都可以将我引向更有效的解决方案?
library(tidyverse)
mtcars %>%
group_by(cyl) %>%
nest() %>%
crossing(n_random_sample = 1:20, n_replicate = 1:4) %>%
mutate(res = map2_dbl(data, n_random_sample, function(data, n) {
data %>%
sample_n(n, replace = TRUE) %>%
summarise(mean_mpg = mean(mpg)) %>%
pull(mean_mpg)
}))
#> # A tibble: 240 x 5
#> cyl data n_random_sample n_replicate res
#> <dbl> <list> <int> <int> <dbl>
#> 1 6 <tibble [7 × 10]> 1 1 17.8
#> 2 6 <tibble [7 × 10]> 1 2 21
#> 3 6 <tibble [7 × 10]> 1 3 19.2
#> 4 6 <tibble [7 × 10]> 1 4 18.1
#> 5 6 <tibble [7 × 10]> 2 1 19.6
#> 6 6 <tibble [7 × 10]> 2 2 19.4
#> 7 6 <tibble [7 × 10]> 2 3 19.6
#> 8 6 <tibble [7 × 10]> 2 4 20.4
#> 9 6 <tibble [7 × 10]> 3 1 20.1
#> 10 6 <tibble [7 × 10]> 3 2 18.9
#> # ... with 230 more rows
由reprex package(v0.2.1)于2018-11-19创建
编辑:我现在正在处理更大的数据集。使用data.table可以更有效地做到这一点吗?
答案 0 :(得分:3)
这是一个替代解决方案,该解决方案将您的原始数据集作为子集,并使用一个函数选择行样本,而不是使用nest
创建子数据集并将其存储为列表变量,然后选择一个样本使用map
:
library(tidyverse)
# create function to sample rows
f = function(c, n) {
mtcars %>%
filter(cyl == c) %>%
sample_n(n, replace = TRUE) %>%
summarise(mean_mpg = mean(mpg)) %>%
pull(mean_mpg)
}
# vectorise function
f = Vectorize(f)
# set seed for reproducibility
set.seed(11)
tbl_df(mtcars) %>%
distinct(cyl) %>%
crossing(n_random_sample = 1:20, n_replicate = 1:4) %>%
mutate(res = f(cyl, n_random_sample))
# # A tibble: 240 x 4
# cyl n_random_sample n_replicate res
# <dbl> <int> <int> <dbl>
# 1 6 1 1 21
# 2 6 1 2 21
# 3 6 1 3 18.1
# 4 6 1 4 21
# 5 6 2 1 20.4
# 6 6 2 2 21.2
# 7 6 2 3 20.4
# 8 6 2 4 19.6
# 9 6 3 1 18.4
#10 6 3 2 19.6
# # ... with 230 more rows
答案 1 :(得分:1)
mm<-lapply(rep(1:20, each=4), sample_n, tbl=mtcars)
这将为您提供nrows = 1:20的表格列表,每4次列出一次。
您可以继续执行此操作以命名列表的元素:
names(mm)<-paste0("sample.",apply(expand.grid(1:4,1:20),1,paste,collapse="-"))
结果:
head(mm,5)
$`sample.1-1`
mpg cyl disp hp drat wt qsec vs am gear carb
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.9 1 1 5 2
$`sample.2-1`
mpg cyl disp hp drat wt qsec vs am gear carb
Ferrari Dino 19.7 6 145 175 3.62 2.77 15.5 0 1 5 6
$`sample.3-1`
mpg cyl disp hp drat wt qsec vs am gear carb
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
$`sample.4-1`
mpg cyl disp hp drat wt qsec vs am gear carb
Toyota Corona 21.5 4 120.1 97 3.7 2.465 20.01 1 0 3 1
$`sample.1-2`
mpg cyl disp hp drat wt qsec vs am gear carb
Ferrari Dino 19.7 6 145 175 3.62 2.77 15.5 0 1 5 6
Volvo 142E 21.4 4 121 109 4.11 2.78 18.6 1 1 4 2