有四个变量
(S1, S2, S3, S4)
有约束
(S1+S2+S3+S4=100)
。
有四个给定的常量(C1, C2, C3, C4)
。我想最大化(S1/C1 + S2/C2 + S3/C3 + S4/C4)
的值。这是我在python中的代码:
#!/usr/bin/env python3
import numpy as np
from scipy.optimize import minimize
S0 = [25, 25, 25, 25]
C = [89415,8991,10944,15164]
def objective(S, C):
total = 0
for index in range(4):
total = total + S[index]/C[index]
return -total
def constraint(S):
return (100 - S[0] - S[1] - S[2] - S[3])
b = (0.0, 100.0)
boundaries = (b,b,b,b)
con = ({'type':'eq', 'fun':constraint})
solution = minimize(objective,S0,args=(C),method='SLSQP',bounds=boundaries,constraints=con)
print (solution)
我的代码只是返回S的初始猜测作为最终结果
fun: -0.0069931517268763755
jac: array([-1.11838453e-05, -1.11222384e-04, -9.13742697e-05, -6.59456709e-05])
message: 'Optimization terminated successfully.'
nfev: 6
nit: 1
njev: 1
status: 0
success: True
x: array([25., 25., 25., 25.])
我要去哪里错了?
答案 0 :(得分:1)
函数输出值的差异似乎在优化器的默认容限内,以使优化器在迭代之间停止优化函数。将容差设置为较小的值,例如1e-12
可以帮助:
solution = minimize(objective,S0,args=(C),method='SLSQP',bounds=boundaries,constraints=con, tol=1e-12)
结果:
fun: -0.01112223334445557
jac: array([ -1.11837871e-05, -1.11222267e-04, -9.13742697e-05,
-6.59456709e-05])
message: 'Optimization terminated successfully.'
nfev: 192
nit: 32
njev: 32
status: 0
success: True
x: array([ 0.00000000e+00, 1.00000000e+02, 3.01980663e-14,
0.00000000e+00])
大约等于绝对最大解[0,100,0,0]。