我有一个数据集,该数据集的变量具有左偏分布(尾巴在左侧)。
variable <- c(rep(35, 2), rep(36, 4), rep(37, 16), rep(38, 44), rep(39, 72), rep(40, 30))
我只是想使这些数据具有更正态分布,因此我可以执行方差分析,但是使用log10或log2会使数据仍然偏左。我可以使用哪种变换使这些数据更正常?
编辑:我的模型是:mod <- lme(reponse ~ variable*variable2, random=~group, data=data)
,因此Kruskal Wallace可以工作,除了随机效应和一个预测变量项。我进行了Shapiro Wilk测试,我的数据肯定是非正常的。如果可以的话,我想转换我的数据,以便ANOVA有更好的机会检测到重要的结果。要么,要么对非正常数据进行混合效果测试。
@Ben Bolker-感谢您的答复;我很感激。我确实读过您的答案,但我仍在仔细阅读您的一些建议的含义(我对统计数据非常陌生)。我的p值非常接近有效值,因此我不希望进行p破解,但我也想给我的数据最大的机会,使其成为重要值。如果我不能证明转换数据或使用除方差分析以外的其他方法,那就可以了。
我在下面提供了数据帧快照。我的响应变量是“ temp.max”,即植物死亡的最高温度。我的预测变量是“ growth.chamber”(29或21度生长室)和“环境”(田地或森林)。我的随机变量是“ groupID”(种植植物的组,由5-10个个体组成)。这是一个互惠的移植实验,所以我在21度和29度室内饲养了森林和野外植物。我想知道的是,田间和森林种群之间的“最大温度”是否不同,生长室之间的“最大温度”是否不同,以及关于温度最大的环境和生长室之间是否存在任何相互作用。我将非常非常感谢您的帮助。谢谢。
> dput(data)
structure(list(groupID = structure(c(12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 16L, 16L,
16L, 16L, 16L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L,
18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 17L, 17L, 17L,
17L, 17L, 17L, 17L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 11L, 11L,
11L, 11L, 11L, 8L, 8L, 8L, 8L, 8L), .Label = c("GRP_104", "GRP_111",
"GRP_132", "GRP_134", "GRP_137", "GRP_142", "GRP_145", "GRP_147",
"GRP_182", "GRP_192", "GRP_201", "GRP_28", "GRP_31", "GRP_40",
"GRP_68", "GRP_70", "GRP_78", "GRP_83", "GRP_92", "GRP_98"), class = "factor"),
individual = c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 8L, 9L, 1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L, 4L, 5L, 6L,
7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L,
9L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 16L, 17L, 1L, 2L, 3L,
4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 1L, 2L,
3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L,
7L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 15L, 16L, 20L, 1L, 2L, 3L,
4L, 5L, 6L, 7L, 16L, 1L, 2L, 3L, 4L, 5L, 11L, 12L, 14L, 1L,
2L, 3L, 4L, 5L, 6L, 7L, 18L, 19L, 20L, 1L, 2L, 3L, 4L, 5L,
16L, 17L, 18L, 19L, 20L, 1L, 2L, 3L, 4L, 5L, 1L, 2L, 3L,
4L, 5L), temp.max = c(39L, 35L, 39L, 39L, 35L, 40L, 40L,
40L, 40L, 39L, 39L, 39L, 39L, 39L, 39L, 39L, 39L, 38L, 38L,
38L, 39L, 39L, 40L, 38L, 40L, 39L, 39L, 40L, 40L, 39L, 39L,
39L, 39L, 39L, 39L, 39L, 39L, 39L, 39L, 39L, 39L, 40L, 38L,
40L, 40L, 40L, 40L, 40L, 40L, 39L, 40L, 39L, 39L, 40L, 39L,
39L, 39L, 39L, 38L, 38L, 38L, 38L, 40L, 39L, 39L, 38L, 38L,
39L, 39L, 37L, 39L, 39L, 37L, 39L, 39L, 39L, 39L, 37L, 39L,
39L, 38L, 37L, 38L, 38L, 38L, 36L, 36L, 36L, 37L, 37L, 40L,
39L, 40L, 39L, 39L, 37L, 37L, 38L, 38L, 38L, 37L, 38L, 38L,
38L, 37L, 38L, 38L, 37L, 38L, 40L, 38L, 38L, 38L, 38L, 37L,
38L, 39L, 38L, 38L, 38L, 38L, 38L, 40L, 38L, 40L, 39L, 39L,
39L, 39L, 39L, 39L, 39L, 39L, 39L, 40L, 40L, 39L, 39L, 38L,
37L, 39L, 37L, 39L, 39L, 39L, 39L, 39L, 39L, 40L, 39L, 39L,
40L, 40L, 38L, 40L, 40L, 36L, 38L, 38L, 38L, 38L, 37L, 37L,
38L, 38L, 38L, 39L, 39L), environment = structure(c(1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L), .Label = c("field", "forest"), class = "factor"), growth.chamber = c(29L,
29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 21L, 21L, 21L,
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L,
21L, 21L, 21L, 21L, 29L, 29L, 29L, 29L, 29L, 21L, 21L, 21L,
21L, 21L, 21L, 21L, 21L, 21L, 21L, 29L, 29L, 29L, 29L, 29L,
29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L,
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 29L, 29L, 29L,
29L, 29L, 29L, 29L, 29L, 29L, 29L, 21L, 21L, 21L, 21L, 21L,
21L, 21L, 21L, 21L, 21L, 29L, 29L, 29L, 29L, 29L, 21L, 21L,
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 29L, 29L, 29L, 29L,
29L, 29L, 29L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L,
21L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 21L, 21L, 21L,
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L,
21L, 21L, 21L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L,
29L, 21L, 21L, 21L, 21L, 21L, 29L, 29L, 29L, 29L, 29L)), .Names = c("groupID",
"individual", "temp.max", "environment", "growth.chamber"), row.names = c(1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 21L, 22L, 23L, 24L, 25L,
26L, 27L, 28L, 29L, 30L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L,
49L, 58L, 59L, 60L, 61L, 62L, 68L, 69L, 70L, 71L, 72L, 73L, 74L,
75L, 76L, 77L, 88L, 89L, 90L, 91L, 92L, 93L, 94L, 95L, 96L, 97L,
108L, 109L, 110L, 111L, 112L, 113L, 114L, 122L, 123L, 124L, 125L,
126L, 127L, 128L, 129L, 130L, 139L, 140L, 141L, 142L, 143L, 144L,
145L, 146L, 147L, 148L, 158L, 159L, 160L, 161L, 162L, 163L, 164L,
165L, 166L, 167L, 178L, 179L, 180L, 181L, 182L, 188L, 189L, 190L,
191L, 192L, 193L, 194L, 195L, 196L, 197L, 208L, 209L, 210L, 211L,
212L, 213L, 214L, 222L, 223L, 224L, 225L, 226L, 227L, 228L, 229L,
230L, 231L, 242L, 243L, 244L, 245L, 246L, 247L, 248L, 249L, 258L,
259L, 260L, 261L, 262L, 263L, 264L, 265L, 272L, 273L, 274L, 275L,
276L, 277L, 278L, 279L, 280L, 281L, 292L, 293L, 294L, 295L, 296L,
297L, 298L, 299L, 300L, 301L, 312L, 313L, 314L, 315L, 316L, 322L,
323L, 324L, 325L, 326L), class = "data.frame")
答案 0 :(得分:4)
tl; dr ,您实际上可能不必担心此处的偏斜。
这里有一些问题,由于它们主要是统计问题,而不是与编程有关的问题,所以这个问题可能与CrossValidated更为相关。
如果我正确复制了您的数据,则它们等效于此:
dd <- rep(35:40,c(2,4,16,44,72,30))
plot(table(dd))
您的数据是离散的-这就是@ user113156发布的密度图具有明显峰值的原因。
这里是问题:
答案 1 :(得分:2)
您的变量遵循离散分布。您的整数值为35(n = 2)至40(n = 30)。我认为您需要进行一些序数分析,将值从35降低到37,而在一类中的观测值更少。否则,您可以使用kruskal.test()函数执行非参数分析。
答案 2 :(得分:0)
我有坏消息和好消息。
library(ggplot2); theme_set(theme_bw())
library(dplyr)
处理数据可确认这是一个嵌套设计;每个组都在单个环境/生长室组合中发生。
tt <- with(dd,table(groupID,
interaction(environment,growth.chamber)))
## exactly one non-zero entry per group
all(rowSums(tt>0)==1)
将growth.chamber
转换为分类变量;将每个组折叠到其平均temp.max
值(并记录每个组的观察次数)
dda <-(dd
%>% mutate(growth.chamber=factor(growth.chamber))
%>% group_by(groupID,environment,growth.chamber)
%>% summarise(n=n(),temp.max=mean(temp.max))
)
ggplot(dda,aes(growth.chamber,temp.max,
colour=environment))+
geom_boxplot(aes(fill=environment),alpha=0.2)+
geom_point(position=position_dodge(width=0.75),
aes(size=n),alpha=0.5)+
scale_size(range=c(3,7))
现在我们已经进行了汇总(不会丢失我们关心的任何信息),我们可以使用线性回归,其权重指定每个观察的样本数:
m1 <- lm(temp.max~growth.chamber*environment,weights=n,
data=dda)
检查残差的分布等:
plot(m1)
一切看起来不错;没有迹象表明存在严重偏见,异方差,非常态或离群值...
summary(m1)
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 38.2558 0.2858 133.845 <2e-16 ***
## growth.chamber29 0.3339 0.4144 0.806 0.432
## environmentforest 0.2442 0.3935 0.620 0.544
## growth.chamber29:environmentforest 0.3240 0.5809 0.558 0.585
## Residual standard error: 1.874 on 16 degrees of freedom
## Multiple R-squared: 0.2364, Adjusted R-squared: 0.09318
## F-statistic: 1.651 on 3 and 16 DF, p-value: 0.2174
或系数图(dotwhisker::dwplot(m1)
)