我有一个包含两列的数据框:一列用于ID_number,一列用于week_number。 看起来可能像这样:
df1 = pd.DataFrame({'ID_number':[13, 13, 14, 14, 14, 15, 15,16], 'week_number':[1, 2, 1, 2, 3, 1, 4, 5]})
# ID_number week_number
#0 13 1
#1 13 2
#2 14 1
#3 14 2
#4 14 3
#5 15 1
#6 15 4
#7 16 5
我想为每个不同的ID选择星期值为2和3的那些ID,然后为数据做一个标签。如果一个ID没有第2周和第3周,则将其标记为1。否则,将其标记为0。
就目前而言,我提出了一个不太优雅的解决方案,该方法可行,但我确信必须有另一种方法:
def check_courier_week(df, field, weeks):
weeks_not_provided = weeks
new_df = df
new_df['label'] = np.zeros(len(df))
for c in np.unique(df[field]):
tmp = df[df[field] == c]
if len(np.unique(tmp.week_number.isin(weeks_not_provided))) == 1 and np.unique(np.unique(tmp.week_number.isin(weeks_not_provided))) == False:
new_df['label'][df[field] == c] = 1
else:
new_df['label'][df[field] == c] = 0
return new_df
有关如何改善这种情况的任何想法?我猜可能有一个使用groupby的解决方案,但我不知道如何实现。
生成的标签应为:
# ID_number week_number label
#0 13 1 0.0
#1 13 2 0.0
#2 14 1 0.0
#3 14 2 0.0
#4 14 3 0.0
#5 15 1 1.0
#6 15 4 1.0
#7 16 5 1.0
谢谢!
答案 0 :(得分:2)
将groupby
与transform
any
一起使用
(~(df1['week_number'].isin([2,3])).groupby(df1['ID_number']).transform('any')).astype(int)
Out[39]:
0 0
1 0
2 0
3 0
4 0
5 1
6 1
7 1
Name: week_number, dtype: int32
答案 1 :(得分:1)
unique = df1.loc[df1['week_number'].isin([2,3]), 'ID_number'].unique()
df['label'] = np.where(df1['ID_number'].isin(unique), 0, 1)
或者:
df['label'] = (~df1['ID_number'].isin(unique)).astype(int)
print(df)
ID_number week_number label
0 13 1 0
1 13 2 0
2 14 1 0
3 14 2 0
4 14 3 0
5 15 1 1
6 15 4 1
7 16 5 1
答案 2 :(得分:1)
虽然效率不高,但您可以通过set.isdisjoint
利用set
操作:
def checker(x):
return set(x).isdisjoint({2, 3})
df1['flag'] = df1.groupby('ID_number')['week_number'].transform(checker)
print(df1)
ID_number week_number flag
0 13 1 0
1 13 2 0
2 14 1 0
3 14 2 0
4 14 3 0
5 15 1 1
6 15 4 1
7 16 5 1
答案 3 :(得分:0)
要回答如何使用groupby:您可以按ID_number进行分组,然后以这种方式找到标签,即IE:
df1['label'] = np.zeros(len(df))
grouped_table = df1.groupby('ID_number')
groups = list(set(df1['ID_number']))
for group in groups:
test_list = list(set(grouped_table.getgroup(group)))
if (2 in test_list) & (3 in test_list):
df1.loc[df1['ID_number'] == group]['label'] = 0
else:
df1.loc[df1['ID_number'] == group]['label'] = 1