我的颜色检测代码检测到一些颜色,同时还提供了检测到的颜色的百分比值。但是,我想创建一个基于视觉的输出,例如直方图或图形,因此我希望获得有关如何创建输出的任何建议。我在一些论坛中进行了搜索,但大多数都是针对静止图像的。
我的代码如下: #import模块
import cv2
import numpy as np
import time
import matplotlib.pyplot as plt
#capturing video through webcam
cap=cv2.VideoCapture(0)
while(1):
_, img = cap.read()
#converting frame(img i.e BGR) to HSV (hue-saturation-value)
hsv=cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
#definig the range of red color
red_lower=np.array([166,84,141],np.uint8)
red_upper=np.array([186,255,255],np.uint8)
#definig the range of dark red color
dred_lower=np.array([0,180,80],np.uint8)
dred_upper=np.array([6,255,141],np.uint8)
#defining the range of pink color
pink_lower=np.array([137,17,130],np.uint8)
pink_upper=np.array([150,165,255],np.uint8)
#defining the Range of cream color
cream_lower=np.array([0,5,168],np.uint8)
cream_upper=np.array([33,113,255],np.uint8)
#defining the Range of Blue color
blue_lower=np.array([97,100,80],np.uint8)
blue_upper=np.array([117,255,180],np.uint8)
#defining the Range of light Blue color
lblue_lower=np.array([100,56.1,142.8],np.uint8)
lblue_upper=np.array([100,70,155.5],np.uint8)
#defining the Range of cyan color
cyan_lower=np.array([90,200,200],np.uint8)
cyan_upper=np.array([90,255,255],np.uint8)
#defining the Range of purple color
purple_lower=np.array([128,40,125],np.uint8)
purple_upper=np.array([138,255,255],np.uint8)
#defining the Range of yellow color
yellow_lower=np.array([24,45,110],np.uint8)
yellow_upper=np.array([30,255,255],np.uint8)
#defining the Range of green color
green_lower=np.array([45,59,119],np.uint8)
green_upper=np.array([68,255,255],np.uint8)
#defining the Range of White color
White_lower=np.array([0,0,200],np.uint8)
White_upper=np.array([180,255,255],np.uint8)
#defining the range of grey color
grey_lower=np.array([106,5,168],np.uint8)
grey_upper=np.array([120,75,255],np.uint8)
#defining the Range of orange color
orange_lower=np.array([15,30,60],np.uint8)
orange_upper=np.array([15,255,255],np.uint8)
#defining the range of offwhite color
offwhite_lower=np.array([0,0,168],np.uint8)
offwhite_upper=np.array([0,0,210],np.uint8)
#defining the Range of black color
Black_lower=np.array([0,0,0],np.uint8)
Black_upper=np.array([180,255,40],np.uint8)
#defining the Range of brown color
Brown_lower=np.array([128,100,150],np.uint8)
Brown_upper=np.array([160,150,255],np.uint8)
#defining the range of beige color
beige_lower=np.array([10,50,180],np.uint8)
beige_upper=np.array([100,255,255],np.uint8)
#finding the range of the colors in the image
red=cv2.inRange(hsv, red_lower, red_upper)
pink=cv2.inRange(hsv,pink_lower,pink_upper)
cream=cv2.inRange(hsv,cream_lower,cream_upper)
dred=cv2.inRange(hsv, dred_lower, dred_upper)
blue=cv2.inRange(hsv,blue_lower,blue_upper)
lblue=cv2.inRange(hsv,lblue_lower,lblue_upper)
cyan=cv2.inRange(hsv,cyan_lower,cyan_upper)
yellow=cv2.inRange(hsv,yellow_lower,yellow_upper)
green=cv2.inRange(hsv,green_lower,green_upper)
purple=cv2.inRange(hsv,purple_lower,purple_upper)
orange=cv2.inRange(hsv,orange_lower,orange_upper)
White=cv2.inRange(hsv,White_lower,White_upper)
offwhite=cv2.inRange(hsv,offwhite_lower,offwhite_upper)
Black=cv2.inRange(hsv,Black_lower,Black_upper)
grey=cv2.inRange(hsv,grey_lower,grey_upper)
brown=cv2.inRange(hsv,Brown_lower,Brown_upper)
beige=cv2.inRange(hsv,beige_lower,beige_upper)
#Morphological transformation, Dilation
kernal = np.ones((5 ,5), "uint8")
red=cv2.dilate(red, kernal)
res=cv2.bitwise_and(img, img, mask = red)
pink=cv2.dilate(pink,kernal)
res1=cv2.bitwise_and(img, img, mask = pink)
cream=cv2.dilate(cream,kernal)
res1=cv2.bitwise_and(img, img, mask = cream)
dred=cv2.dilate(dred, kernal)
res=cv2.bitwise_and(img, img, mask = dred)
blue=cv2.dilate(blue,kernal)
res1=cv2.bitwise_and(img, img, mask = blue)
lblue=cv2.dilate(lblue,kernal)
res1=cv2.bitwise_and(img, img, mask = lblue)
cyan=cv2.dilate(cyan,kernal)
res1=cv2.bitwise_and(img, img, mask = cyan)
yellow=cv2.dilate(yellow,kernal)
res2=cv2.bitwise_and(img, img, mask = yellow)
purple=cv2.dilate(purple, kernal)
res2=cv2.bitwise_and(img, img, mask = purple)
green=cv2.dilate(green,kernal)
res2=cv2.bitwise_and(img, img, mask = green)
orange=cv2.dilate(orange,kernal)
res2=cv2.bitwise_and(img, img, mask = orange)
White=cv2.dilate(White,kernal)
res2=cv2.bitwise_and(img, img, mask = White)
offwhite=cv2.dilate(offwhite, kernal)
res2=cv2.bitwise_and(img, img, mask = offwhite)
Black=cv2.dilate(Black,kernal)
res2=cv2.bitwise_and(img, img, mask = Black)
grey=cv2.dilate(grey, kernal)
res2=cv2.bitwise_and(img, img, mask = grey)
brown=cv2.dilate(brown,kernal)
res2=cv2.bitwise_and(img, img, mask = brown)
beige=cv2.dilate(beige, kernal)
res2=cv2.bitwise_and(img, img, mask = beige)
#Tracking the Red Color
(_,contours,hierarchy)=cv2.findContours(red,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
for pic, contour in enumerate(contours):
area = cv2.contourArea(contour)
if(area>=300):
x,y,w,h = cv2.boundingRect(contour)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,0,255),2)
cv2.putText(img,"RED color",(x,y),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0,0,255))
#Tracking the dark Red Color
(_,contours,hierarchy)=cv2.findContours(dred,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
for pic, contour in enumerate(contours):
area = cv2.contourArea(contour)
if(area>=300):
x,y,w,h = cv2.boundingRect(contour)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,0,139),2)
cv2.putText(img,"Dark RED color",(x,y),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0,0,139))
#Tracking the pink Color
(_,contours,hierarchy)=cv2.findContours(pink,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
for pic, contour in enumerate(contours):
area = cv2.contourArea(contour)
if(area>=300):
x,y,w,h = cv2.boundingRect(contour)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,255),2)
cv2.putText(img,"Pink color",(x,y),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,0,255))
#Tracking the cream Color
(_,contours,hierarchy)=cv2.findContours(cream,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
for pic, contour in enumerate(contours):
area = cv2.contourArea(contour)
if(area>=300):
x,y,w,h = cv2.boundingRect(contour)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(150,255,255),2)
cv2.putText(img,"cream color",(x,y),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (150,255,255))
#Tracking the light Blue Color
(_,contours,hierarchy)=cv2.findContours(lblue,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
for pic, contour in enumerate(contours):
area = cv2.contourArea(contour)
if(area>=300):
x,y,w,h = cv2.boundingRect(contour)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(180,0,0),2)
cv2.putText(img,"light blue color",(x,y),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (180,0,0))
#Tracking the Blue Color
(_,contours,hierarchy)=cv2.findContours(blue,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
for pic, contour in enumerate(contours):
area = cv2.contourArea(contour)
if(area>=300):
x,y,w,h = cv2.boundingRect(contour)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
cv2.putText(img,"Blue color",(x,y),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,0,0))
#Tracking the cyan Color
(_,contours,hierarchy)=cv2.findContours(cyan,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
for pic, contour in enumerate(contours):
area = cv2.contourArea(contour)
if(area>=300):
x,y,w,h = cv2.boundingRect(contour)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,255,0),2)
cv2.putText(img,"cyan color",(x,y),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,0))
#Tracking the yellow Color
(_,contours,hierarchy)=cv2.findContours(yellow,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
for pic, contour in enumerate(contours):
area = cv2.contourArea(contour)
if(area>=300):
x,y,w,h = cv2.boundingRect(contour)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,217),2)
cv2.putText(img,"yellow color",(x,y),cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,255,217))
#Tracking the purple Color
(_,contours,hierarchy)=cv2.findContours(purple,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
for pic, contour in enumerate(contours):
area = cv2.contourArea(contour)
if(area>=300):
x,y,w,h = cv2.boundingRect(contour)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(128,0,128),2)
cv2.putText(img,"Purple color",(x,y),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (128,0,128))
#Tracking the green Color
(_,contours,hierarchy)=cv2.findContours(green,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
for pic, contour in enumerate(contours):
area = cv2.contourArea(contour)
if(area>=300):
x,y,w,h = cv2.boundingRect(contour)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
cv2.putText(img,"green color",(x,y),cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,255,0))
#Tracking the orange Color
(_,contours,hierarchy)=cv2.findContours(orange,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
for pic, contour in enumerate(contours):
area = cv2.contourArea(contour)
if(area>=300):
x,y,w,h = cv2.boundingRect(contour)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,140,255),2)
cv2.putText(img,"orange color",(x,y),cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,140,255))
#Tracking the White Color
(_,contours,hierarchy)=cv2.findContours(White,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
for pic, contour in enumerate(contours):
area = cv2.contourArea(contour)
if(area>=300):
x,y,w,h = cv2.boundingRect(contour)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,255,255),2)
cv2.putText(img,"White color",(x,y),cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255,255,255))
#Tracking the offwhite Color
(_,contours,hierarchy)=cv2.findContours(offwhite,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
for pic, contour in enumerate(contours):
area = cv2.contourArea(contour)
if(area>=300):
x,y,w,h = cv2.boundingRect(contour)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(128,128,128),2)
cv2.putText(img,"Offwhite color",(x,y),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (128,128,128))
#Tracking the black Color
(_,contours,hierarchy)=cv2.findContours(Black,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
for pic, contour in enumerate(contours):
area = cv2.contourArea(contour)
if(area>=300):
x,y,w,h = cv2.boundingRect(contour)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,0,0),2)
cv2.putText(img,"black color",(x,y),cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,0,0))
#Tracking the grey Color
(_,contours,hierarchy)=cv2.findContours(grey,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
for pic, contour in enumerate(contours):
area = cv2.contourArea(contour)
if(area>=300):
x,y,w,h = cv2.boundingRect(contour)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(220,220,220),2)
cv2.putText(img,"Grey color",(x,y),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (220,220,220))
#Tracking the brown Color
(_,contours,hierarchy)=cv2.findContours(brown,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
for pic, contour in enumerate(contours):
area = cv2.contourArea(contour)
if(area>=300):
x,y,w,h = cv2.boundingRect(contour)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(33,67,101),2)
cv2.putText(img,"brown color",(x,y),cv2.FONT_HERSHEY_SIMPLEX, 1.0, (33,67,101))
#Tracking the beige Color
(_,contours,hierarchy)=cv2.findContours(beige,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
for pic, contour in enumerate(contours):
area = cv2.contourArea(contour)
if(area>=300):
x,y,w,h = cv2.boundingRect(contour)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(126,169,230),2)
cv2.putText(img,"Beige color",(x,y),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (126,169,236))
#Show red percentage
red_per = red
Total_image = (blue+yellow+green+dred+White+Black+offwhite+cream+pink+purple+lblue+beige+brown+grey+orange+cyan+red)
Per_Red = np.mean((red_per/Total_image)*100)
print('Percentage of red color',Per_Red)
#Show blue percentage
blue_per = blue
Total_image2 = (blue+red+yellow+green+dred+White+Black+offwhite+cream+pink+purple+lblue+beige+brown+grey+orange+cyan)
Per_Blue = np.mean((blue_per/Total_image2)*100)
print('Percentage blue',Per_Blue)
#Show green percentage
green_per = green
Total_image3 = (green+blue+yellow+dred+White+Black+offwhite+cream+pink+purple+lblue+beige+brown+grey+orange+cyan+red)
Per_Green = np.mean((green_per/Total_image3)*100)
print('Percentage green',Per_Green)
#Show yellow percentage
yellow_per = yellow
Total_image4 = (yellow+blue+red+green+dred+White+Black+offwhite+cream+pink+purple+lblue+beige+brown+grey+orange+cyan)
Per_Yellow = np.mean((yellow_per/Total_image4)*100)
print('Percentage yellow',Per_Yellow)
#Show dark red percentage
dred_per = dred
Total_image = (dred+blue+yellow+green+red+White+Black+offwhite+cream+pink+purple+lblue+beige+brown+grey+orange+cyan)
Per_dR = np.mean((dred_per/Total_image)*100)
print('Percentage of dark red color',Per_dR)
#Show Cream percentage
Cream_per = cream
Total_image2 = (cream+blue+yellow+green+dred+White+Black+offwhite+red+pink+purple+lblue+beige+brown+grey+orange+cyan)
Per_Cream = np.mean((Cream_per/Total_image2)*100)
print('Percentage of cream color',Per_Cream)
#Show lblue percentage
lblue_per = lblue
Total_image3 = (lblue+blue+yellow+green+dred+White+Black+offwhite+cream+pink+purple+red+beige+brown+grey+orange+cyan)
Per_lBlue = np.mean((lblue_per/Total_image3)*100)
print('Percentage of light blue color',Per_lBlue)
#Show White percentage
White_per = White
Total_image4 = (White+blue+yellow+green+dred+red+Black+offwhite+cream+pink+purple+lblue+beige+brown+grey+orange+cyan)
Per_White = np.mean((White_per/Total_image4)*100)
print('Percentage of white color',Per_White)
#Show orange percentage
orange_per = orange
Total_image = (orange+blue+yellow+green+dred+White+Black+offwhite+cream+pink+purple+lblue+beige+brown+grey+red+cyan)
Per_Orange = np.mean((orange_per/Total_image)*100)
print('Percentage of orange color',Per_Orange)
#Show purple percentage
purple_per = purple
Total_image2 = (purple+blue+yellow+green+dred+White+Black+offwhite+cream+pink+red+lblue+beige+brown+grey+orange+cyan)
Per_Purple = np.mean((purple_per/Total_image2)*100)
print('Percentage of purple color',Per_Purple)
#Show pink percentage
pink_per = pink
Total_image3 = (pink+blue+yellow+green+dred+White+Black+offwhite+cream+red+purple+lblue+beige+brown+grey+orange+cyan)
Per_Pink = np.mean((pink_per/Total_image3)*100)
print('Percentage of pink color',Per_Pink)
#Show cyan percentage
cyan_per = cyan
Total_image4 = (cyan+blue+yellow+green+dred+White+Black+offwhite+cream+pink+purple+lblue+beige+brown+grey+orange+red)
Per_Cyan = np.mean((cyan_per/Total_image4)*100)
print('Percentage of cyan color',Per_Cyan)
#Show grey percentage
grey_per = grey
Total_image = (grey+blue+yellow+green+dred+White+Black+offwhite+cream+pink+purple+lblue+beige+brown+red+orange+cyan)
Per_Grey = np.mean((grey_per/Total_image)*100)
print('Percentage of grey color',Per_Grey)
#Show black percentage
black_per = Black
Total_image1 = (Black+blue+yellow+green+dred+White+red+offwhite+cream+pink+purple+lblue+beige+brown+grey+orange+cyan)
Per_Black = np.mean((black_per/Total_image1)*100)
print('Percentage of black color',Per_Black)
#Show beige percentage
beige_per = beige
Total_image2 = (beige+blue+yellow+green+dred+White+Black+offwhite+cream+pink+purple+lblue+red+brown+grey+orange+cyan)
Per_Beige = np.mean((beige_per/Total_image2)*100)
print('Percentage of beige',Per_Beige)
#Show brown percentage
brown_per = brown
Total_image3 = (brown+blue+yellow+green+dred+White+Black+offwhite+cream+pink+purple+lblue+beige+red+grey+orange+cyan)
Per_Brown = np.mean((brown_per/Total_image3)*100)
print('Percentage of brown color',Per_Brown)
#Show offwhite percentage
offwhite_per = offwhite
Total_image4 = (offwhite+blue+yellow+green+dred+White+Black+red+cream+pink+purple+lblue+beige+brown+grey+orange+cyan)
Per_Offwhite = np.mean((offwhite_per/Total_image4)*100)
print('Percentage of offwhite',Per_Offwhite)
cv2.imshow("Color Tracking",img)
if cv2.waitKey(10) & 0xFF == ord('q'):
cap.release()
cv2.destroyAllWindows()
break
我要实现的代码呈现一个直方图,其中显示了y轴(0-100)%和x轴(将检测到的颜色),并显示了数据在何时变化检测到更多的颜色,以及随着检测到越来越多的颜色,值如何波动。
先谢谢您!