我已经编写了一个代码,可以通过使用HSV颜色代码来检测MCB的尺寸。但是,当我运行程序时,我达到了预期的输出,但是在检测到的对象周围还有3个其他帧。虽然输出文本数据设置为一帧,但我仍然无法漫游其他3个无意义的帧。我想问一下如何删除它们的任何建议。
我设置轮廓数据以检测HSV代码的最大区域,但仍然无法正常工作。
为获得更好的主意,我将附上代码提供的屏幕截图。
输出图像
代码如下:
import cv2
from collections import deque
from scipy.spatial import distance as dist
from imutils import perspective
import numpy as np
import argparse
import imutils
import math
import time
font = cv2.FONT_HERSHEY_SIMPLEX
def midpoint(ptA, ptB):
return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5)
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video", help="path to the (optional) video file")
args = vars(ap.parse_args())
sensitivity = 43
greyLower = np.array([96,0,176-sensitivity])
greyUpper = np.array([180,sensitivity,255])
pixelsPerMetric = None
KNOWN_WIDTH = 19
if not args.get("video", False):
camera = cv2.VideoCapture(0)
else:
camera = cv2.VideoCapture(args["video"])
while True:
(grabbed, frame) = camera.read()
if args.get("video") and not grabbed:
break
frame = imutils.resize(frame, width=600)
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv,greyLower, greyUpper)
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)
(_, contours, hierarchy) = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
center = None
for pic, contour in enumerate(contours):
if len(contours) > 0:
contour = max(contours, key =cv2.contourArea)
x,y,w,h = cv2.boundingRect(contour)
rect = (x+w, y+h)
rect = cv2.minAreaRect(contour)
box = cv2.boxPoints(rect)
box = np.int0(box)
box = perspective.order_points(box)
M = cv2.moments(contour)
for (x, y) in box:
M = cv2.rectangle(frame,(int(x),int(y)),(int(x+w), int(y+h)),(0,0,139),2)
# unpack the ordered bounding box, then compute the midpoint
# between the top-left and top-right coordinates, followed by
# the midpoint between bottom-left and bottom-right coordinates
(tl, tr, br, bl) = box
(tltrX, tltrY) = midpoint(tl, tr)
(blbrX, blbrY) = midpoint(bl, br)
# compute the midpoint between the top-left and top-right points,
# followed by the midpoint between the top-righ and bottom-right
(tlblX, tlblY) = midpoint(tl, bl)
(trbrX, trbrY) = midpoint(tr, br)
# draw the midpoints on the image
cv2.circle(M, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1)
cv2.circle(M, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1)
cv2.circle(M, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1)
cv2.circle(M, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1)
# draw lines between the midpoints
cv2.line(M, (int(tltrX), int(tltrY)), (int(blbrX), int(blbrY)),
(255, 0, 255), 2)
cv2.line(M, (int(tlblX), int(tlblY)), (int(trbrX), int(trbrY)),
(255, 0, 255), 2)
# compute the Euclidean distance between the midpoints
dA = dist.euclidean((tltrX, tltrY), (blbrX, blbrY))
dB = dist.euclidean((tlblX, tlblY), (trbrX, trbrY))
# if the pixels per metric has not been initialized, then
# compute it as the ratio of pixels to supplied metric
# (in this case, inches)
# compute the size of the object
dimA = dA / KNOWN_WIDTH
dimB = dB / KNOWN_WIDTH
if rect >300:
frame = cv2.rectangle(frame,(int(x),int(y)),(int(x+w), int(y+h)),(0,0,139),2)
cv2.putText(frame,"MCB",(x,y),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0,0,139))
# draw the object sizes on the image
cv2.putText(frame, "{:.1f}cm".format(dimA),
(int(tltrX - 15), int(tltrY - 10)), cv2.FONT_HERSHEY_SIMPLEX,
0.65, (255, 255, 255), 2)
cv2.putText(frame, "{:.1f}cm".format(dimB),
(int(trbrX + 10), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX,
0.65, (255, 255, 255), 2)
cv2.imshow("Frame", frame)
key = cv2.waitKey(10) & 0xFF
if key == ord("q"):
break
camera.release()
cv2.destroyAllWindows()
任何建议都将对您有所帮助,在此先感谢您!