我有一个大型语料库(大约40万个独特的句子)。我只想获取每个单词的TF-IDF分数。我试图通过扫描每个单词并计算频率来计算每个单词的分数,但是它花费的时间太长。
我用过:
X= tfidfVectorizer(corpus)
来自sklearn,但是它直接返回句子的向量表示。有什么方法可以获取语料库中每个单词的TF-IDF分数吗?
答案 0 :(得分:5)
要使用sklearn.feature_extraction.text.TfidfVectorizer
(摘自文档):
>>> from sklearn.feature_extraction.text import TfidfVectorizer
>>> corpus = [
... 'This is the first document.',
... 'This document is the second document.',
... 'And this is the third one.',
... 'Is this the first document?',
... ]
>>> vectorizer = TfidfVectorizer()
>>> X = vectorizer.fit_transform(corpus)
>>> print(vectorizer.get_feature_names())
['and', 'document', 'first', 'is', 'one', 'second', 'the', 'third', 'this']
>>> print(X.shape)
(4, 9)
现在,如果我打印X.toarray()
:
[[0. 0.46979139 0.58028582 0.38408524 0. 0.
0.38408524 0. 0.38408524]
[0. 0.6876236 0. 0.28108867 0. 0.53864762
0.28108867 0. 0.28108867]
[0.51184851 0. 0. 0.26710379 0.51184851 0.
0.26710379 0.51184851 0.26710379]
[0. 0.46979139 0.58028582 0.38408524 0. 0.
0.38408524 0. 0.38408524]]
此2D数组中的每一行都引用一个文档,并且该行中的每个元素都引用相应单词的TF-IDF分数。要知道每个元素代表什么词,请查看.get_feature_names()
函数。它将打印出单词列表。例如,在这种情况下,请查看第一个文档的行:
[0., 0.46979139, 0.58028582, 0.38408524, 0., 0., 0.38408524, 0., 0.38408524]
在示例中,.get_feature_names()
返回以下内容:
['and', 'document', 'first', 'is', 'one', 'second', 'the', 'third', 'this']
因此,您将分数映射到这样的单词:
{'and': 0.0, 'document': 0.46979139, 'first': 0.58028582, 'is': 0.38408524, 'one': 0.0, 'second': 0.0, 'the': 0.38408524, 'third': 0.0, 'this': 0.38408524}