我正在计算tf-idf如下。
texts=['human interface computer',
'survey user computer system response time',
'eps user interface system',
'system human system eps',
'user response time']
dictionary = corpora.Dictionary(texts)
corpus = [dictionary.doc2bow(text) for text in texts]
tfidf = models.TfidfModel(corpus)
corpus_tfidf = tfidf[corpus]
analyzedDocument = namedtuple('AnalyzedDocument', 'word tfidf_score')
d=[]
for doc in corpus_tfidf:
for id, value in doc:
word = dictionary.get(id)
score = value
d.append(analyzedDocument(word, score))
但是,现在我想使用idf
值最高的单词来识别语料库中最重要的3个单词。请告诉我怎么做?
答案 0 :(得分:0)
假设你的名单没问题,你应该可以按如下方式安排:在顶部:
from operator import itemgetter
然后在底部:
e=sorted(d, key=itemgetter(1))
top3 = e[:3]
print(top3)