二维的Scipy curve_fit无法正常工作-对象是否太深?

时间:2018-11-13 15:58:09

标签: python optimization scipy curve-fitting gaussian

我有一个2400 x 2400的数据数组,看起来像这样:

data = [[-2.302670298082603040e-01 -2.304885241061924717e-01 -2.305029774024092148e-01 -2.304807100897505734e-01 -2.303702531336284665e-01 -2.307144352067780346e-01...
[-2.302670298082603040e-01 -2.304885241061924717e-01 -2.305029774024092148e-01 -2.304807100897505734e-01 -2.303702531336284665e-01 -2.307144352067780346e-01...
...

并且我正在尝试拟合以下2D高斯函数:

def Gauss2D(x, mux, muy, sigmax, sigmay, amplitude, offset, rotation):
    assert len(x) == 2
    X = x[0]
    Y = x[1]
    A = (np.cos(rotation)**2)/(2*sigmax**2) + (np.sin(rotation)**2)/(2*sigmay**2)
    B = (np.sin(rotation*2))/(4*sigmay**2) - (np.sin(2*rotation))/(4*sigmax**2)
    C = (np.sin(rotation)**2)/(2*sigmax**2) + (np.cos(rotation)**2)/(2*sigmay**2)
    G = amplitude*np.exp(-((A * (X - mux) ** 2) + (2 * B * (X - mux) * (Y - muy)) + (C * (Y - muy) ** 2))) + offset
    return G
使用scipy curve_fit

读取此数据。因此,我将自变量(坐标)的域定义如下:

vert = np.arange(2400, dtype=float)
horiz = np.arange(2400, dtype=float)
HORIZ, VERT = np.meshgrid(horiz, vert)

,并作为参数的初始估算值:

po = np.asarray([1200., 1200., 300., 300., 0.14, 0.22, 0.], dtype=float)

这样我可以进行以下调整:

popt, pcov = curve_fit(Gauss2D, (HORIZ, VERT), data, p0=po)

这将返回以下错误消息,而我却没有最清楚的线索:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
ValueError: object too deep for desired array
---------------------------------------------------------------------------
error                                     Traceback (most recent call last)
<ipython-input-11-ebba75332bfa> in <module>()
----> 1 curve_fit(Gauss2D, (HORIZ, VERT), data, p0=po)

/home/harrythegenius/anaconda3/lib/python3.6/site-packages/scipy/optimize/minpack.py in curve_fit(f, xdata, ydata, p0, sigma, absolute_sigma, check_finite, bounds, method, jac, **kwargs)
734         # Remove full_output from kwargs, otherwise we're passing it in twice.
735         return_full = kwargs.pop('full_output', False)
--> 736         res = leastsq(func, p0, Dfun=jac, full_output=1, **kwargs)
737         popt, pcov, infodict, errmsg, ier = res
738         cost = np.sum(infodict['fvec'] ** 2)

/home/harrythegenius/anaconda3/lib/python3.6/site-packages/scipy/optimize/minpack.py in leastsq(func, x0, args, Dfun, full_output, col_deriv, ftol, xtol, gtol, maxfev, epsfcn, factor, diag)
385             maxfev = 200*(n + 1)
386         retval = _minpack._lmdif(func, x0, args, full_output, ftol, xtol,
--> 387                                  gtol, maxfev, epsfcn, factor, diag)
388     else:
389         if col_deriv:

error: Result from function call is not a proper array of floats.

我不明白“对象对于所需数组而言太深”的消息。我还看到了针对此错误消息的多种在线解决方案,其中可以通过确保传递给curve_fit的所有数据类型均为浮点型或通过检查数组的尺寸是否正确来解决此问题。我一次又一次地尝试了这两种方法,但这没什么区别。那么,这是怎么了?

2 个答案:

答案 0 :(得分:0)

根据评论,这是一个使用curve_fit()的3D表面装配工,具有3D散点图,3D表面图和轮廓图。

import numpy, scipy, scipy.optimize
import matplotlib
from mpl_toolkits.mplot3d import  Axes3D
from matplotlib import cm # to colormap 3D surfaces from blue to red
import matplotlib.pyplot as plt

graphWidth = 800 # units are pixels
graphHeight = 600 # units are pixels

# 3D contour plot lines
numberOfContourLines = 16


def SurfacePlot(func, data, fittedParameters):
    f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)

    matplotlib.pyplot.grid(True)
    axes = Axes3D(f)

    x_data = data[0]
    y_data = data[1]
    z_data = data[2]

    xModel = numpy.linspace(min(x_data), max(x_data), 20)
    yModel = numpy.linspace(min(y_data), max(y_data), 20)
    X, Y = numpy.meshgrid(xModel, yModel)

    Z = func(numpy.array([X, Y]), *fittedParameters)

    axes.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=1, antialiased=True)

    axes.scatter(x_data, y_data, z_data) # show data along with plotted surface

    axes.set_title('Surface Plot (click-drag with mouse)') # add a title for surface plot
    axes.set_xlabel('X Data') # X axis data label
    axes.set_ylabel('Y Data') # Y axis data label
    axes.set_zlabel('Z Data') # Z axis data label

    plt.show()
    plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems


def ContourPlot(func, data, fittedParameters):
    f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
    axes = f.add_subplot(111)

    x_data = data[0]
    y_data = data[1]
    z_data = data[2]

    xModel = numpy.linspace(min(x_data), max(x_data), 20)
    yModel = numpy.linspace(min(y_data), max(y_data), 20)
    X, Y = numpy.meshgrid(xModel, yModel)

    Z = func(numpy.array([X, Y]), *fittedParameters)

    axes.plot(x_data, y_data, 'o')

    axes.set_title('Contour Plot') # add a title for contour plot
    axes.set_xlabel('X Data') # X axis data label
    axes.set_ylabel('Y Data') # Y axis data label

    CS = matplotlib.pyplot.contour(X, Y, Z, numberOfContourLines, colors='k')
    matplotlib.pyplot.clabel(CS, inline=1, fontsize=10) # labels for contours

    plt.show()
    plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems


def ScatterPlot(data):
    f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)

    matplotlib.pyplot.grid(True)
    axes = Axes3D(f)
    x_data = data[0]
    y_data = data[1]
    z_data = data[2]

    axes.scatter(x_data, y_data, z_data)

    axes.set_title('Scatter Plot (click-drag with mouse)')
    axes.set_xlabel('X Data')
    axes.set_ylabel('Y Data')
    axes.set_zlabel('Z Data')

    plt.show()
    plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems


def func(data, a, alpha, beta):
    t = data[0]
    p_p = data[1]
    return a * (t**alpha) * (p_p**beta)


if __name__ == "__main__":
    xData = numpy.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0])
    yData = numpy.array([11.0, 12.1, 13.0, 14.1, 15.0, 16.1, 17.0, 18.1, 90.0])
    zData = numpy.array([1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.0, 9.9])

    data = [xData, yData, zData]

    initialParameters = [1.0, 1.0, 1.0] # these are the same as scipy default values in this example

    # here a non-linear surface fit is made with scipy's curve_fit()
    fittedParameters, pcov = scipy.optimize.curve_fit(func, [xData, yData], zData, p0 = initialParameters)

    ScatterPlot(data)
    SurfacePlot(func, data, fittedParameters)
    ContourPlot(func, data, fittedParameters)

    print('fitted prameters', fittedParameters)

    modelPredictions = func(data, *fittedParameters) 

    absError = modelPredictions - zData

    SE = numpy.square(absError) # squared errors
    MSE = numpy.mean(SE) # mean squared errors
    RMSE = numpy.sqrt(MSE) # Root Mean Squared Error, RMSE
    Rsquared = 1.0 - (numpy.var(absError) / numpy.var(zData))
    print('RMSE:', RMSE)
    print('R-squared:', Rsquared)

答案 1 :(得分:0)

好的,我已经解决了这个问题。我怀疑这是一个维度问题。

应用于2D数组的curve_fit的适当尺寸如下:

  • 功能-一维,在这种情况下,除非强制执行,否则它与数据集的维相同。
  • x数据-(2,n * m),其中n和m是数据数组的维数
  • y个数据-(n * m)
  • 初始参数列表-一维数组,仅包含函数中所述顺序相同的所有参数

因此,我保持参数数组不变,但是对该函数进行了以下更改:

def Gauss2D(x, mux, muy, sigmax, sigmay, amplitude, offset, rotation):
    assert len(x) == 2
    X = x[0]
    Y = x[1]
    A = (np.cos(rotation)**2)/(2*sigmax**2) + (np.sin(rotation)**2)/(2*sigmay**2)
    B = (np.sin(rotation*2))/(4*sigmay**2) - (np.sin(2*rotation))/(4*sigmax**2)
    C = (np.sin(rotation)**2)/(2*sigmax**2) + (np.cos(rotation)**2)/(2*sigmay**2)
    G = amplitude*np.exp(-((A * (X - mux) ** 2) + (2 * B * (X - mux) * (Y - muy)) + (C * (Y - muy) ** 2))) + offset
    return G.ravel()

我将以下内容传递给x数据参数:

x = np.vstack((HORIZ.ravel(), VERT.ravel()))

,然后输入y数据参数:

y = data.ravel()

因此,我使用以下方法对其进行了优化:

curve_fit(Gauss2D, x, y, po)

效果很好。