我在使用pyomo时遇到一个简单的多周期优化问题。该模型的目标是根据该小时的火花价差(电价-燃气价格*热量费率+可变成本)来确定电厂应开启或关闭的时间。 Spark传播可以为负值,表示工厂应该关闭,也可以为正值,表示工厂应该运行。
目前的结果表明,尽管火花蔓延为负,该装置仍会打开并运行。
给定一个小时的火花传播,如何在每个时间步打开和关闭工厂?
我确信这是一个相当简单的解决方案,但是对于pyomo和优化问题我还是很陌生,因此非常感谢任何指导和帮助。
gas_price = [2.81,2.81,2.81,2.81,2.81,2.81,2.81,2.81,2.81,2.81,2.81,2.81,2.81,2.81,2.81,2.81,2.81]
power_price = [26.24,23.8,21.94,20.4,21.2,19.98,19.34,18.83,19.19,18.48,21,21.77,23.45,26.53,29.85,31.8,28.7]
priceDict = dict(enumerate(power_price))
gasDict = dict(enumerate(gas_price))
m = en.ConcreteModel()
m.Time = en.RangeSet(0, len(power_price)-1)
m.powerPrice = en.Param(m.Time, initialize=priceDict)
m.gasPrice = en.Param(m.Time, initialize=gasDict)
m.generation = en.Var(m.Time, bounds=(0,800),
initialize=0)
m.spark = en.Var(m.Time,initialize=0)
m.heatRate = en.Var(m.Time,initialize=7)
m.vom = en.Var(m.Time,initialize=2)
m.max_gen = en.Param(initialize=800)
def Obj_fn(m):
return sum((m.spark[i]*m.generation[i]) for i in m.Time)
m.total_cost = en.Objective(rule=Obj_fn,sense=en.maximize)
# 7 is the heat rate of the plant
def spark_rule(m,i):
return (m.spark[i] == m.powerPrice[i]-(m.gasPrice[i]*7+m.vom[i]))
m.hourly_spark = en.Constraint(m.Time,rule=spark_rule)
def generation_rule(m,i):
return (0<=m.generation[i]<=m.max_gen)
m.t_generation_rule = en.Constraint(m.Time, rule=generation_rule)
opt = SolverFactory("clp",executable='C:\\clp.exe')
results = opt.solve(m)
该模型的输出当前为:
Time Generation Spark Spread
1 0 6.57
2 800 4.13
3 800 2.27
4 800 0.73
5 800 1.53
6 800 0.31
7 800 -0.33
8 800 -0.84
9 800 -0.48
10 800 -1.19
11 800 1.33
12 800 2.1
13 800 3.78
14 800 6.86
15 800 10.18
16 800 12.13
17 800 9.03
答案 0 :(得分:0)
我在这里可能是错的,但是我认为您实际上是在将heatRate
和vom
定义为参数,而不是变量。
这导致一个奇怪的问题,因为只要“火花”价格为正,工厂自然会使用其最大功率,而当火花价格为负时,工厂将自然使用其最大功率。我想您稍后会添加更多约束。
如果heatRate
和vom
已修复,则可以通过以下方式重新定义问题:
from pyomo import environ as pe
gas_price = [2.81,2.81,2.81,2.81,2.81,2.81,2.81,2.81,2.81,2.81,2.81,2.81,2.81,2.81,2.81,2.81,2.81]
power_price = [26.24,23.8,21.94,20.4,21.2,19.98,19.34,18.83,19.19,18.48,21,21.77,23.45,26.53,29.85,31.8,28.7]
priceDict = dict(enumerate(power_price))
gasDict = dict(enumerate(gas_price))
m = pe.ConcreteModel()
m.Time = pe.RangeSet(0, len(power_price)-1)
# this are all input parameters
m.powerPrice = pe.Param(m.Time, initialize=priceDict)
m.gasPrice = pe.Param(m.Time, initialize=gasDict)
m.vom = pe.Param(default=7)
m.heatRate = pe.Param(default=2)
m.maxGen = pe.Param(default=800)
# this is a "dependent" parameter
m.spark = pe.Param(m.Time,
initialize = lambda m,t: m.powerPrice[t]-(m.gasPrice[t]*7+m.vom)
)
# this is the only variable
m.generation = pe.Var(m.Time,
initialize=0,
bounds = (0, m.maxGen)
)
def Obj_fn(m):
return sum((m.spark[t]*m.generation[t]) for t in m.Time)
m.total_cost = pe.Objective(rule=Obj_fn,sense=pe.maximize)