非线性规划中的整数决策变量

时间:2018-10-20 11:19:31

标签: python scipy nonlinear-optimization pyomo mystic

我想最大化两个linear函数的商。我希望我的决策变量在此处为Binary,即它们必须为integers,并且只能采用01的值。

我想知道如何实现?我正在寻找使用SLSQP之类的算法,而我已经研究过scipy,但可悲的是,它并没有将决策变量的值限制为二进制和整数。

有人知道一个带有易于理解的界面的库吗?或者,是否有任何方法可以通过scipy本身来实现。 我已经阅读了以下问题:Restrict scipy.optimize.minimize to integer values

但是在提供的三种解决方案中,我认为其中没有一种是有效的。 如果能提供任何帮助,那将真的很有帮助。

2 个答案:

答案 0 :(得分:0)

由于您没有任何约束,除了变量应该是二进制的之外,最大化非常简单。您可以根据分子和分母中相应系数的比率对决策变量进行排序。 假设所有系数均为非负数,并且分子和分母都有偏差(以避免除以零),则可以在下面使用我的实现。

import numpy as np

def maximize(numer, denom):
    """ 
    Function that maximizes an expression on the form

    a[0]*x[0] + a[1]*x[1] + ... + a[n-1]*x[n-1]
    -----------------------------------------
    b[0]*x[0] + b[1]*x[1] + ... + b[n-1]*x[n-1]

    where a[i] >= 0, b[i] >= 0, x[i] in [0,1] for 0 < i < n (non-negativity)
    and
    a[0] >= 0, b[0] > 0, x[0] = 1 (no division by zero)
    """

    ratios = numer / denom
    indices, ratios = zip(*sorted(enumerate(ratios), key = lambda x: - x[1]))
    decision = np.zeros_like(numer) 
    decision[0] = 1 # the bias is always enabled
    best_value = np.sum(decision * numer) / np.sum(decision * denom)
    for index, ratio in zip(indices, ratios):
        if index == 0:
            continue
        if ratio > best_value:
            decision[index] = 1 
            best_value = np.sum(decision * numer) / np.sum(decision * denom)
        else:
            # no more ratios can increase the cumulative ratio
            break  
    return decision

这是示例用法

if __name__ == "__main__":
    numer = np.array([1, 3, 4, 6])
    denom = np.array([1, 2, 2, 3])
    print("Input: {} / {}".format(",".join([str(x) for x in numer]), ",".join([str(x) for x in denom])))
    decision = maximize(numer, denom)
    print("Decision: {}".format(decision))
    print("Objective: {}".format(np.sum(decision * numer) / np.sum(decision * denom)))

答案 1 :(得分:0)

我已经完全完成了这个准备工作……但是这就是我将如何使用mystic来做的事情。

>>> equations = """
... 3.*x0 + 5.*x1 + 7.*x2 + 9.*x3 = 1.*x0 + 2.*x1 + 3.*x3
... """
>>> bounds = [(0,None)]*4
>>>
>>> def objective(x):
...   return x[0]**2 + 2*x[1] - 2*x[2] - x[3]**2
... 
>>> from mystic.symbolic import generate_penalty, generate_conditions
>>> pf = generate_penalty(generate_conditions(equations))
>>> from mystic.constraints import integers
>>> 
>>> @integers()
... def round(x):
...   return x
... 
>>> from mystic.solvers import diffev2
>>> result = diffev2(objective, x0=bounds, bounds=bounds, penalty=pf, constraints=round, npop=20, gtol=50, disp=True, full_output=True)
Optimization terminated successfully.
         Current function value: 0.000000
         Iterations: 121
         Function evaluations: 2440
>>> result[0]
array([0., 0., 0., 0.])

现在稍微修改方程式...

>>> equations = """
... 3.*x0 + 5.*x1 + 7.*x2 + 9.*x3 = 5 + 1.*x0 + 2.*x1 + 3.*x3
... """
>>> pf = generate_penalty(generate_conditions(equations))
>>> result = diffev2(objective, x0=bounds, bounds=bounds, penalty=pf, constraints=round, npop=20, gtol=50, disp=True, full_output=True)
Optimization terminated successfully.
         Current function value: 3.000000
         Iterations: 102
         Function evaluations: 2060
>>> result[0]
array([1., 1., 0., 0.])

如果要使用二进制变量而不是整数,则可以使用bounds = [(0,1)]*4或将@integers()替换为@discrete([0.0, 1.0])

虽然上面的结果不太有趣,但是在mystic的GitHub上有一些经过深思熟虑的具有整数编程和广义约束的全局优化示例: https://github.com/uqfoundation/mystic/blob/master/examples2/integer_programming.py https://github.com/uqfoundation/mystic/blob/master/examples2/olympic.py