我有这样的pandas数据框。我想要按App_Name在单独的变量中分组
App_Name Date Response Gross Revenue
com.apple.tiles2 2018-10-13 3748.723574 24133394
com.orange.thescore 2018-10-13 2034.611964 8273607
com.number.studio 2018-10-13 1807.756545 33736740
com.orange.thescore 2018-10-14 4671.930435 38575556
com.number.studio 2018-10-14 3533.461547 38726087
com.banana.com 2018-10-14 2920.33747 86230313
com.apple.tiles2 2018-10-15 3986.434851 35928884
com.number.studio 2018-10-15 2044.759823 76526368
com.apple.tiles2 2018-10-16 2610.214035 30611434
com.alpha.studio 2018-10-16 1731.429858 11643154
com.banana.com 2018-10-16 1601.387403 13781285
com.alpha.studio 2018-10-17 2769.373388 13198984
com.banana.com 2018-10-17 2205.359489 21974901
com.orange.thescore 2018-10-17 1820.852862 7565015
com.alpha.studio 2018-10-18 2784.822039 24217875
com.banana.com 2018-10-18 2545.899329 28361412
com.orange.thescore 2018-10-18 2052.207745 7544861
我想按App_Name对数据进行分组,并为每个App_Name存储在单独的列表或数据框中,如下所示:
App_Name Date Response Gross Revenue
com.alpha.studio 2018-10-16 1731.429858 11643154
com.alpha.studio 2018-10-17 2769.373388 13198984
com.alpha.studio 2018-10-18 2784.822039 24217875
App_Name Date Response Gross Revenue
com.apple.tiles2 2018-10-13 3748.723574 24133394
com.apple.tiles2 2018-10-15 3986.434851 35928884
com.apple.tiles2 2018-10-16 2610.214035 30611434
App_Name Date Response Gross Revenue
com.banana.com 2018-10-14 2920.33747 86230313
com.banana.com 2018-10-16 1601.387403 13781285
com.banana.com 2018-10-17 2205.359489 21974901
com.banana.com 2018-10-18 2545.899329 28361412
App_Name Date Response Gross Revenue
com.number.studio 2018-10-14 3533.461547 38726087
com.number.studio 2018-10-13 1807.756545 33736740
com.number.studio 2018-10-15 2044.759823 76526368
App_Name Date Response Gross Revenue
com.orange.thescore 2018-10-13 2034.611964 8273607
com.orange.thescore 2018-10-14 4671.930435 38575556
com.orange.thescore 2018-10-17 1820.852862 7565015
com.orange.thescore 2018-10-18 2052.207745 7544861
答案 0 :(得分:3)
将groupby
对象转换为DataFrames字典:
d = dict(tuple(df.groupby('App_Name')))
print (d['com.alpha.studio'])
App_Name Date Response Gross Revenue
9 com.alpha.studio 2018-10-16 1731.429858 11643154 NaN
11 com.alpha.studio 2018-10-17 2769.373388 13198984 NaN
14 com.alpha.studio 2018-10-18 2784.822039 24217875 NaN
编辑:
d1 = {}
for k, v in d.items():
d1[k] = v['Gross Revenue'].rolling(2).mean()