我有一个奇怪的问题,当我加载模型的权重时,与使用fit方法进行训练时相比,DNN.predict方法要慢得多。我还注意到,当我对一批图像进行预测时,预测的速度越来越快。
这是我的代码
class Reseau(object):
def init(self, img_size, lr=-1, activation=" "):
tf.logging.set_verbosity(tf.logging.ERROR)
self.lr = lr
self.activation = activation
self.img_size = img_size
self.alreadySaved = 0
def setting(self, X, Y, test_x, test_y, nbEpoch):
tflearn.init_graph(num_cores=32, gpu_memory_fraction=1)
with tf.device("/device:GPU:0"):
convnet = input_data(shape=[None, self.img_size, self.img_size, 3], name='input')
convnet = conv_2d(convnet, 32, 5, activation=self.activation)
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 64, 5, activation=self.activation)
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 128, 5, activation=self.activation)
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 64, 5, activation=self.activation)
convnet = max_pool_2d(convnet, 5)
convnet = conv_2d(convnet, 32, 5, activation=self.activation)
convnet = max_pool_2d(convnet, 5)
convnet = flatten(convnet)
convnet = fully_connected(convnet, 1024, activation=self.activation, name='last')
convnet = fully_connected(convnet, 1024, activation=self.activation, name='last')
convnet = fully_connected(convnet, 1024, activation=self.activation, name='last')
convnet = fully_connected(convnet, 1024, activation=self.activation, name='last')
convnet = dropout(convnet, 0.8)
convnet = fully_connected(convnet, 2, activation='softmax')
convnet = regression(convnet, optimizer='adam', learning_rate=self.lr, loss='categorical_crossentropy', name='targets')
self.model = tflearn.DNN(convnet, tensorboard_dir='log')
if self.alreadySaved == 0:
self.model.fit({'input': X}, {'targets': Y}, n_epoch=nbEpoch, validation_set=({'input': test_x}, {'targets': test_y}), snapshot_step=500, show_metric=True, run_id="model")
self.model.save("./model")
else:
self.model.load("./model", weights_only=True)
return self.model
def predire(self, img, label):
image = array(img).reshape(1, self.img_size,self.img_size,3)
model_out = self.model.predict(image)
rep = 0
if np.argmax(model_out) == np.argmax(label): rep = 1
else: rep = 0
return rep
这是我主要的一部分
reseau.setting(X, Y, test_x, test_y, NB_EPOCH)
X = np.array([i[0] for i in test]).reshape(-1,IMG_SIZE,IMG_SIZE,3)
Y = [i[1] for i in test]
cpt = 0
vrai = 0
start_time = time.time()
for i in range(20):
cpt = 0
vrai = 0
start_time = time.time()
for img in tqdm(X):
prediction = reseau.predire(img, Y[cpt])
cpt += 1
if prediction == 1:
vrai += 1
如您所见,我预测同一批图像20次。第一次总是比其他时间慢(如果没有拟合,我预计会先进行82幅图像拍摄,然后每秒340幅图像;经过拟合处理,第一次显示255张图像,然后每秒340幅图像)。
我真的不知道要解决这个问题。