在询问有关该问题的问题后,我会继续介绍它。我正在尝试将字母从A到D进行分类。所有输入图像均为64x64和graycolor。
我们的CNN的第一层是:
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape = input_shape, activation = 'relu'))
input_shape
来自:
# Define the number of classes
num_classes = 4
labels_name={'A':0,'B':1,'C':2,'D':3}
img_data_list=[]
labels_list=[]
for dataset in data_dir_list:
img_list=os.listdir(data_path+'/'+ dataset)
print ('Loading the images of dataset-'+'{}\n'.format(dataset))
label = labels_name[dataset]
for img in img_list:
input_img=cv2.imread(data_path + '/'+ dataset + '/'+ img )
input_img=cv2.cvtColor(input_img, cv2.COLOR_BGR2GRAY)
input_img_resize=cv2.resize(input_img,(128,128))
img_data_list.append(input_img_resize)
labels_list.append(label)
img_data = np.array(img_data_list)
img_data = img_data.astype('float32')
img_data /= 255
print (img_data.shape)
labels = np.array(labels_list)
print(np.unique(labels,return_counts=True))
#convert class labels to on-hot encoding
Y = np_utils.to_categorical(labels, num_classes)
#Shuffle the dataset
x,y = shuffle(img_data,Y, random_state=2)
# Split the dataset
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=2)
#Defining the model
input_shape=img_data[0].shape
print(input_shape)
答案 0 :(得分:2)
当使用多层(卷积层和池化)时,CNN模型需要一个尺寸更大的数据集。为避免出现负尺寸问题,请增加图像尺寸或减少CNN层。可以。
答案 1 :(得分:0)
Conv2d期望输入形状(批大小,w,h,过滤器)。
您需要在conv层之前添加一个重塑形状以适合数据:
model.add(Reshape((64, 64, 1)))
这会将您的模型尺寸设置为[None,64,64,1],适用于Conv2d。