分段错误(核心已转储)-仅在某些时候显示此错误,但我似乎无法修复它

时间:2018-11-10 20:59:11

标签: c segmentation-fault core fault

我在这里和其他地方都看到过许多不同的论坛,尤其是我的代码似乎找不到什么错。我没有指针,所以只能是我正在使用的数组-我试图更改它们,看看会发生什么,试图记下正在发生的事情,但有时仍然显示错误。我只知道它与内存和访问我不应该使用的内容有关,但无法识别问题-可能有更多的问题。

#include <stdio.h>
#include <math.h>
typedef int bool;
#define true 1
#define false 0
int main(int argc, char *argv[]){
    int number;
    int test;
    while ((test = scanf("%d", &number)) == 1){
            if (number == 0){
                    return 0;
            }
            if (number < 0){
                    fprintf(stderr, "Error: Chybny vstup!\n");
                    return 100;
            }
            printf("Prvociselny rozklad cisla %d je:\n", number);
            if (number == 1){
                    printf("%d", number);
            }
            else{
                    bool prime[number+1];
                    for(int i = 0; i <= number; i++){
                            prime[i] = true;
                    }

                    for(int j = 2; j * j <= number; j++){
                            if (prime[j] == true){
                                    for (int multiples = 2; prime[j * multiples] <= number; multiples++){
                                            prime[j * multiples] = false;
                                    }
                            }
                    }
                    int result[50];
                    int multipliers[50];
                    for(int i = 0; i <= 50; i++){
                            result[i] = 0;
                    }
                    for(int i = 0; i <= 50; i++){
                            multipliers[i] = 1;
                    }
                    int counter = 0;
                    for (int test=2; test <= number; test++){
                            if (prime[test]){
                                    if (number % test == 0){
                                            number /= test;
                                            result[counter] = test;
                                            counter++;
                                            while(number % test == 0){
                                                    multipliers[counter-1]++;
                                                    number /= test;
                                            }
                                    }
                            }
                    }
                    for (int c = 0; c < counter; c++){
                            if (multipliers[c] > 1){
                                    printf("%d^%d", result[c], multipliers[c]);
                            }
                            if (multipliers[c] == 1){
                                    printf("%d", result[c]);
                            }
                            if (result[c+1] > 1){
                                    printf(" x ");
                            }
                    }
            }
            printf("\n");
    }
    if (test == 0){
            fprintf(stderr, "Error: Chybny vstup!\n");
            return 100;
    }
    }

1 个答案:

答案 0 :(得分:0)

您应该始终做的是,逐段编写程序,并在完成每个功能之后验证其是否正常工作,然后再移至新功能。由于您随后分别测试了要实现的每个功能,因此您知道最后实现的功能很可能存在所有错误。

在您的情况下,这个问题立即引起我的注意:

for (int multiples = 2; prime[j * multiples] <= number; multiples++){
    prime[j * multiples] = false;
}

在这里,您测试prime[j * multiples] <= number,即将 flag 与一个数字进行比较。由于后期标志被清零,直到数组末尾,j*multiples将超出prime[]数组的范围,并最终使程序崩溃。

测试应该是j * multiples <= number

因为我一次只处理一个功能和一个问题,所以我不知道这是否是您的代码唯一的问题。找出是您的任务。如果您是我,我会分段编写代码,或者在测试时撒上printf(),以验证每个部分是否正常工作,以便我可以依靠自己已经编写的代码,并专注于手头的部分,并以最小的挫败感稳定前进。


最近有许多关于Eratosthenes筛子的问题。我一直发现实现抽象的,动态分配的筛子类型以及更改它的简单访问器/修饰符功能很有用。由于程序中只能有一个筛子,因此可以使用全局变量来描述它:

#include <stdlib.h>
#include <inttypes.h>
#include <limits.h>
#include <string.h>
#include <stdio.h>

/* This is the number of bits in an unsigned long.
   The exact value is floor(log(ULONG_MAX + 1)/log(2)),
   but the following definition will be correct on all
   modern architectures: */
#define  ULONG_BITS  (sizeof (unsigned long) * CHAR_BIT)

/* Prime sieve, with a flag for zero and each odd integer,
   one bit per flag. */
static unsigned long  *sieve = NULL;

/* Largest positive integer within the sieve. */
static uint64_t        sieve_max = 4;

/* Number of unsigned longs allocated and initialized in the sieve. */
static size_t          sieve_words = 0;

/* Function to discard the sieve, if no longer needed. */
static inline void  sieve_free(void)
{
    free(sieve);        /* free(NULL); is safe, and does nothing. */
    sieve       = NULL;
    sieve_max   = 4;    /* Since 0, 1, 2, 3, 4 give built-in answers */
    sieve_words = 0;
}

初始sieve_max为4,因为我们的is_prime()测试函数处理0、1、2和3质数,而所有较大的偶数无论如何都不是质数;这意味着is_prime()始终知道整数0到4:

/* Return 1 if number is prime according to sieve,
          0 if known composite/not prime. */
static inline  int is_prime(const uint64_t  number)
{
    /* 0, 1, 2, and 3 are considered prime. */
    if (number <= 3)
        return 1; /* Prime */

    /* All larger even integers are not prime. */
    if (!(number & 1))
        return 0; /* Not prime */

    /* Outside the sieve? */
    if (number > sieve_max) {
        fprintf(stderr, "is_prime(): %" PRIu64 " is outside the sieve!\n", number);
        exit(EXIT_FAILURE);
    }

    {
        const uint64_t       half = number / 2;
        const size_t         w = half / ULONG_BITS;
        const unsigned long  m = 1uL << (half % ULONG_BITS);

        /* The flag for odd number is (number/2)th.
           half / ULONG_BIT  is the word where bit
           half % ULONG_BIT  is in.
           Return 0 if the bit is set, 1 if clear. */
        return !(sieve[w] & m);
    }
}

我们可以很容易地增加筛子的大小,将所有新标记默认设置为“非素数”:

static void sieve_upto(const uint64_t  max)
{
    /* Number of words needed for (max+1)/2 bits. */
    const uint64_t nwords = 1 + max / (2 * ULONG_BITS);
    const uint64_t nbytes = nwords * (uint64_t)sizeof (unsigned long);
    const size_t   words = (size_t)nwords;
    const size_t   bytes = words * sizeof (unsigned long);
    unsigned long *temp;

    /* Already covered by the current sieve? */
    if (sieve_max > max)
        return;

    /* We need to be able to handle max+1,
       and neither bytes or words should overflow. */
    if (max >= UINT64_MAX ||
        (uint64_t)words != nwords || (uint64_t)bytes != nbytes) {
        fprintf(stderr, "sieve_upto(): %" PRIu64 " is too high a maximum.\n", max);
        exit(EXIT_FAILURE);
    }

    /* Do we already have all the bytes we need? */
    if (words == sieve_words) {
        sieve_max = max;
        return;
    }

    /* Allocate/reallocate. Note that realloc(NULL, size)
       is equivalent to malloc(size), so this is safe
       even if 'sieve' is NULL. */
    temp = realloc(sieve, bytes);
    if (!temp) {
        fprintf(stderr, "Not enough memory for a sieve up to %" PRIu64 ".\n", max);
        exit(EXIT_FAILURE);
    }
    sieve = temp;

    /* Clear the new words to all zeros. */
    memset(sieve + sieve_words, 0, (words - sieve_words) * sizeof (unsigned long));

    sieve_max   = max;
    sieve_words = words;
}

最后,我们需要一个标记数字复合(不是素数)的函数:

static inline void not_prime(const uint64_t  number)
{
    /* Primality is internally handled for 0, 1, 2, 3, and 4. */
    if (number <= 4)
        return;

    /* All larger even numbers are internally handled. */
    if (!(number & 1))
        return;

    /* Outside the sieve? */
    if (number > sieve_max) {
        fprintf(stderr, "not_prime(): %" PRIu64 " is outside the sieve!\n", number);
        exit(EXIT_FAILURE);
    }

    {
        const uint64_t       half = number / 2;
        const size_t         w = half / ULONG_BITS;
        const unsigned long  m = 1uL << (half % ULONG_BITS);

        /* Half is the bit index in sieve[].
           half / ULONG_BITS  is the word containing the bit
           half % ULONG_BITS  that needs to be set. */
        sieve[w] |= m;
    }
}

我要留给你们的Eratosthenes建筑的筛子。我的意图是仅说明如何使用动态内存管理来创建和管理相对有效的(即,平衡内存使用和运行时间)筛查奇数正整数。

({Verifying},一个简单的Eratosthenes筛子在我的笔记本电脑上使用一个单一的零件就发现所有少于10,000,000,000的455,052,511个质数花费不到90秒,而发现所有203,280,221个32位素数的时间少于30秒。核和上述函数。对于更大的范围,最好使用开窗式筛子。请注意,与上述is_prime()不同,质数计数函数不考虑0和1质数。)